QUANTIFYING CHAOS WITH PREDICTIVE FLOWS AND MAPS:

LOCATING UNSTABLE PERIODIC ORBITS

Leonard A. Smith

Department of Applied Mathematics and Theoretical Physics
University of Cambridge, Cambridge CB3 9EW, U.K.
las10@phx.cam.ac.uk

ABSTRACT

Several authors have suggested methods for constructing “predictors” from time series data. It
is shown that using one type of predictor, constructed with radial basis functions, for some known
chaotic systems, the existence of unstable periodic orbits may be established using much less data than
that required by alternative methods. The general question of quantifying the error in a predictor is
also addressed. Considering the fraction of the data that can be predicted as a function of the accuracy
of the prediction provides a method of distinguishing different sources of error in the predictor and,
in doing so, yields an estimate of the magnitude and distribution of the observational noise in the
system.

INTRODUCTION

In the past, low dimensional dynamical systems have been represented by points generated
directly from an observed trajectory; coverage of the relevant regions of phase space has required
data records both long (in terms of the rate at which information appears in the system) and finely
sampled. Recent proposals to quantify systems not with the data directly, but with reconstructed flows
(Broomhead, 1988, Castagli, 1989, Crutchfield and McNamara,1987, Farmer and Sidorowich, 1988,
and Mees,1989) offer a new approach to predicting and quantifying nonlinear dynamical systems.
While a wide variety of reconstruction techniques have been proposed, all are based on utilizing
the information contained in the time ordering of the data points to construct an M-dimensional
interpolation scheme. The techniques differ in the method used to form the interpolation from the
known data points. Hereafter, a reconstructed flow (or map) will be referred to as a predictor. Since
the information in the time ordering of the points is not used in the geometrical analysis (Grassberger
and Procaccia,1983), constructing a good predictor may require less data than the direct calculation
of generalized dimensions (Smith, 1988).

In this paper, predictors constructed from time series data are used to find and quantify the
unstable periodic orbits of the chaotic system which generated the series. New difficulties which
arise in locating the periodic orbits of continuous systems are discussed. The interpolation technique
employed uses the radial basis functions (see Powell, 1985) originally applied to nonlinear time series
data by Castagli(1989). When the system is known, the convergence of true and reconstructed flows
is examined by comparing the unstable periodic orbits present in each system.

To quantify the quality of prediction, the fraction of the time series which can be predicted
within an accuracy a is determined. The behavior of this “predictor error profile”, Ps(a), is related to
changes in the number of points used in constructing the predictor and the time scale of the prediction.
It can be used to quantify the noise in a deterministic system. The variation of Py(a) with the time
scale of the prediction provides a tool for distinguishing stochasticity from determinism and suggests
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a numerically efficient method for estimating an optimal delay time for reconstructing the system.

Predictors for several systems have been studied including the Henon map (Henon, 1976), the
Moore-Spiegel system (Moore and Spiegel, 1966), the Duffing oscillator (either periodically or stochas-
tically forced, see Stone and Holmes (1989)), an Ornstein-Ulhembeck process and experimental results
of baroclinic flow (Read, 1989), boundary layer turbulence (Gaster, 1989) and an electrical oscillator
(King, 1989). In addition real world data records of climate and solar activity have been considered.
In general, predictors for the numerical systems give excellent results; those for low dimensional labo-
ratory systems provide good predictions and successfully locate unstable periodic orbits. The correct
interpretation of the results for the real world systems is not yet clear. This short contribution will
concentrate on the numerical models with a few remarks on the laboratory experiments. A more
detailed report is in preparation.

RADIAL BASIS FUNCTION PREDICTORS

An introduction to the prediction of chaotic dynamical systems using radial basis functions is
given by Castagli (1989). Only a very brief summary is provided here. Consider a deterministic
system with phase space dimension M,. A trajectory, x(t), of this system may be constructed in
M, dimensions from a time series of single observable, o(t), by the method of delays (Packard et al.
1980) to yield (t) = (o(t), o(t + 74), . .., 0(t + (m — 1)74)). Each point on the trajectory has an image
5(t) = o(t +tp), where t, is determined either by a fixed prediction time, 7, (i.e. t, = (m—1)1a+71,)
or through some geometric constraint (as when taking a surface of section of the trajectory).

Choosing n distinct points (z;,¢ = 1,2, ...,n) and their n images (s;,i = 1,2, ...,n), the goal is
to determine a predictor f(z;) : RM+ — R such that

f(zi) =si : (1)

Following Powell (1985), consider f(z) of the form
f@) = Ni(llz — i) ©)
i=1

where ¢(r) are radial basis functions and the ); are constants which are uniquely determined by
equations (1) provided the matrix

Aij = ¢(||=:i — ;1) ®)
is nonsingular. This is always the case (Micchelli, 1985, Powell, 1985) for ¢(r) of the form

$(r) = (r? +¢*)~F )

for 8 > —1 and 8 # 0. The particular cases ¢(r) = r and ¢(r) = (r2 4 ¢2)1/2 (referred to as the
“multiquartic”) will be considered here.

When the predictor is formed in delay coordinates, a single map f(z) : RM+ — R is sufficient to
predict the system. Prediction in singular value decomposition (SVD) coordinates (Broomhead and
King, 1987), or in the true phase space, requires M, such maps fi(z), (j = 1,..., M,), one for each
coordinate.

In order to both construct and test a predictor with the same data set, the trajectory is divided
into two parts, a “base” portion from which the base points, z;, are chosen, and the remaining portion
on which the predictor is tested. The simplest method for choosing base points is to distribute them
uniformly along the base portion of the trajectory. Since determining the \; involves manipulating
an n x n matrix and each prediction requires computing n distances in an M, dimensional space,
the computer power required to implement this procedure increases rapidly with n; it is therefore
desirable to choose the base points efficiently by sparsely sampling regions in which the flow is smooth
and densely sampling the flow elsewhere. A simple way to accomplish this is to build a predictor using
% points and choose additional points from the base portion depending upon how well the images of
these points are predicted. To do this, distribute half the base points uniformly on the base portion
and then predict the base portion of the trajectory. Half the remaining number of base points (one
quarter the total) are chosen from those points whose images are predicted least accurately (with
the condition that no two new points are too close to each other) and the procedure is repeated.
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Finally, the initial (uniformly spaced) points may be removed and the entire procedure repeated.
This approach can significantly reduce the number of points required to make good predictions; it
does not, of course, lessen the data requirements because the base portion must be “long enough”
to explore the entire attractor. The amount of data required for a “long enough” base portion will
depend on the macroscopic structure of the attractor in question (as well as its dimension). Also note
that data from the transient should be included in the base portion when possible.

Two dynamical systems are used as examples below. The Henon map (Henon,1976) is given by

2 =1-az’+y (5)
y =bz (6)
with @ = 1.4 and b = 0.3. The Moore-Spiegel system (Moore and Spiegel, 1966) is given by
3z d%z ondz _
Et?‘i‘d?'F(T—R"}'RZ)E—t-—FTZ—O. (7)

This system displays chaotic behavior for R = 100.0 and T’ = 36.0, the case considered here. A z =0
surface of section of this attractor is shown in Figure 1.
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Figure 1. A z = 0 surface of section for the Moore-Spiegel system consisting of 212 points.
EVALUATION OF A PREDICTOR

Intrinsic limits to very long term prediction of chaotic systems are imposed by the exponential
- divergence of nearby initial conditions, the average rate of which is quantified by the Lyapunov
exponents of the system. It is misleading, however, to think of the Lyapunov exponents as limiting
short term prediction at macroscopic length scales. The level of organization of the flow required
to give exponential divergence (on average) is very high; there may be regions in which the flow
is contracting, making prediction relatively easy. The predictability of a chaotic system should be
expected to vary with location in phase space; there often exist regions of phase space in which
chaotic systems are easier to predict than stochastic systems which, in the mean, diverge more slowly
than exponentially and have Lyapunov exponents equal to zero.

The quality of a prediction varies for several reasons. Consider the error in predicting the image
of some initial condition, z. In addition to the error introduced by the sensitive dependence to initial
condition, error arises from failure of the base points to sufficiently cover the attractor; either when
z is located in a region of the attractor not explored by the base portion of the trajectory or when
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z is relatively close to base points, but is located in a region where the flow possesses significant fine
structure. Predictors are often evaluated by computing the average difference between the predicted
and observed values. This approach does not distinguish different sources of error. Comparing this
average error to a “random guess” is also misleading, especially in continuous systems with persistence
(or seasonality). In continuous systems, predicting the motion on a surface of section reduces the effects
of persistence. To further distinguish these sources of error, consider a plot of the observed error in a
one step prediction versus the distance from z to the nearest base point,d,,.

Such a plot for a predictor constructed for the Henon system with n = 25 consecutive base points
is shown in Figure 2. In general, the observed error grows with increasing d,,; exceptions are the finely
structured lines in regions of large error and small d,. Points in these regions can be divided into
groups which have the same nearest base point. The structures in Figure 2 are then seen to reflect the
structure of the attractor near these base points; as the number of base points used in constructing
the predictor increases, these structures become less apparent while the general trend of increasing
predictor error with increasing d,, remains.

T T T T O T e g oy
8.14 .
.12 F 5
@.1 F ’ e
L]
.08 F 4
@.26 4
y
7
2.04 . 4
i
%] N i 7
o
e - T )
1 - 1 1

dn

Figure 2. The observed error in the one step prediction of the Henon map versus the distance to the
nearest base point. .

An alternative approach to evaluating the predictor error is to consider the fraction of the data,
P¢(a), which can be predicted within a certain accuracy, a. Figure 3 shows this curve for predictors
constructed from 2%, 26, 27 and 28 base points for the Moore-Spiegel system using ¢(r) = r. The
distribution of base points on the attractor and structure of the flow determine the shape of Py(a).
As the number of base points is increased, there is improvement in the high end of the P;(a) curve
(say, Py(a) > 0.9) corresponding to new regions becoming predictable. The low end of the curve (say,
Py(a) < 0.1) is determined by the fine scale structure of the data; the details of the flow if the data is
clean, the details of the noise otherwise. Given a perfect predictor of the system, predictor errors will
remain due to observational effects (noise and truncation error) in the data. These effects impose a
lower bound on the predictor error below which Py(a) is approximately zero. The shape and location
of this transistion may be used to identify the distribution and magnitude of the observational noise.
The Py(a) profiles of Gaussian, Poisson and uniformly distributed white noise are distinguishable. For
well sampled attractors generated from clean experimental signals the resolution of the A/D converter
is apparent as a sharp drop in Py (a). Data from numerical systems tends to show a slower transition
which is dependent on the distribution of the base points; the prediction error for points located near
a base point may be very low. For the case shown in Figure 3, the error in this data is off the scale,
primarily arising from taking the surface of section. If noise of greater magnitude were added to the
data, a sharper drop in Py(a) would be observed.
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Comparing Py(a) curve for one step prediction with that for a many step prediction displays
the change in predictability with increasing prediction time. When the underlying process is random,
the Py(a) profile will not change (assuming persistence effects have been accounted for). For chaotic
systems, the Py profile should degrade toward some limiting case equivalent to making a random guess
from an appropriate distribution. Finally, note that the quality of the predictor will vary with the
details of the reconstruction. This suggests that observing the changes in Py(a) provides an efficient
method for choosing the delay time, 74. Evidence that this is the case will be presented elsewhere.

T T T T T

log2(error)

Figure 3. The predictor error profile for 4 predictors of the Moore-Spiegel system. The curves (from
lowest for highest) correspond to predictors constructed with n = 25,26 27, and 22 points.

UNSTABLE PERIODIC ORBITS

A catalogue of the unstable periodic orbits within a basin of attraction provides a useful descrip-
tion of chaotic attractors. These orbits may be viewed as a skeleton of the attractor; their properties
(number and stability) have been successfully related to the metric properties of the attractor in the
case of the Henon map (Cvitanovic et al., 1989). In this section a new method for determining these
orbits is presented which consists, in short, of estimating the periodic orbits of the system by those
of the predictor. The orbits and their stability are approximated by this method with modest data
requirements; some orbits not accessible with other methods can be identified in a predictive flow. A
detailed application to experimental data is in preparation (Smith and King, 1989).

When the system is known analytically, the original method proposed by Auerbach et al. (1987)
is to select a grid of points on the basin of attraction and, starting at each point, apply a Newton-
Raphson iteration scheme to search for an orbit of a given period. An alternative method is to follow
a single trajectory and invoke the Newton-Raphson scheme at all near returns. This approach quickly
locates the orbits near the attractor but has difficulties with orbits far from the attractor (or in rarely
visited regions on the attractor). For the Henon map it finds periodic points up to period 10 in
agreement with the results of Cvitanovic et al. (1989). Note however, that even in cases where the
“exact” map is known, it is difficult to be certain that all the periodic orbits have been found.

In experimental flows, it is suggested that near returns be considered for each available time
lag. A periodic point is then approximated by the center of mass of a ball of near returns and the
eigenvalues may be estimated by assuming a linearized dynamics about this point. For the Henon
map, Auerbach et al (1988) report data requirements of 2 x 10° iterations to locate orbits of period
less than or equal to 10. This approach will locate only those orbits which are closely shadowed by a
trajectory for at least one complete period. Using a predictive flow requires only that each segment
of the orbit is visited at some point in the time series.
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Considering continuous systems introduces complications not found in maps. When considering
a surface of section of a continuous system, it is necessary to distinguish the number of times an orbit
intersects the section from the period of the orbit. The former will be called the passage of the orbit
and will, of course, depend on the section taken while the period will not. In maps, the passage and
period of a periodic orbit are equal. The method of leoking at a set time lag will miss periodic orbits
when topologically nearby trajectories have different temporal appearances. The simplest example
occurs when a periodic orbit passes close to a fixed point of the flow. The “period” (near return
time) of initial conditions near such a periodic orbit will vary greatly, depending sensitively on their
path near the fixed point. Two approximations of the same periodic orbit which passes through this
region will not look the same when parameterized by time, although they are topologically similar.
(This effect will also bias generalized dimension calculations by redistributing the probability density.)
Taking a surface of section removes this problem. Points which are in the section will return, in general,
after similar periods of time. Initial conditions near a periodic orbit which passes close to a stagnation
point of the flow will have a wide distribution of first return times while those near other periodic
orbits will have a tight distribution. This is, in fact, observed in the nonlinear electronic oscillator.
Comparing the results from several surfaces of section provides an estimate of the error.

With a predictor, the methods developed for known systems may be applied to time series
data. To test the stability of true orbits in the predictor, the known periodic points with periods less
than or equal to 10 where used as initial conditions for a Newton Raphson style iteration procedure
applied with a predictor constructed from 27 consecutive points on the Henon attractor with ¢(r) = r.
In this case all periodic points of period less than 6 were present, with similar stability, to the full
map. Most orbits of higher period were preserved, however their unstable eigenvalue often differed
by a factor of 2 from the true orbit. Note however that the quadratic structure of the Henon map
makes it a questionable test case. This is most apparent when multiquartics are used as the radial
basis functions; in this case a 16 point predictor reproduces the map to astounding accuracy. Such
multiquartic predictors are sensitive to noise. ‘

A more general test case is provided by the z = 0 section of the Moore-Spiegel system. In this
case, near returns on the section were used as initial estimates of periodic orbits in several predictors
with ¢(r) = 7. Predictors using 2% or fewer base points often had periodic orbits not present in Moore-
Spiegel system. These spurious orbits often contain points far from the attractor. The spurious orbits
are not found in a 2° point predictor where the location of the passage 9 points tested agree between
the predictor and the full system to within 1 percent. The stability of the orbits is not well estimated,
however, often differing by a factor of 2.

Before leaving this system, note that other observables may be estimated. For example, the time
until the next passage through a section. Such calculations are required if the Lyapunov exponents
of the reconstructed flow are to be computed from a section. Consider the series of magnifications
an infinitesimal vector experiences as it is iterated along the attractor. The mean of this distribution
corresponds to the largest Lyapunov exponent. For the Henon map, there is good agreement between
a 2° point predictor and the map not only in the mean, but also in the structure of the distribution.

DISCUSSION AND CONCLUSIONS '

Constructing a predictor from data when the system is not known presents new complications
not considered above. These are most often clarified given “long enough” data records. For example
embedding a low dimensional attractor in a large M will result in lower quality predictions. In delay
coordinates, separation in the first coordinate direction(s) corresponds to distance in the true phase
space at earlier times than separation in the last coordinate directions. For embedding dimensions
larger than M, base points near the point to be predicted in the first coordinate direction(s) (but
which correspond to a path which diverges from the trajectory leading to the point to be predicted)
are weighted equally to those which are far away in the first coordinate direction(s) and arbitrarily
close to the current position of the point in the true phase space. Conversely, embedding a high
dimensional system in a low dimensional space will yield good predictions for those regions which
are not saturated by projection effects. Predictions for points which lie in populated regions due to
projection will be poor if the base points do not come from the same region of phase space; however
the prediction of such points would still be poor in the correct embedding dimension if the region
was not well sampled. This is especially true if the reconstruction is determined in SVD coordinates
where the first few coordinate directions contain the majority of the signal. A method to identify
flows reconstructed in M < M, needs to be developed. Periodic orbits will, of course, remain periodic
in projection.
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It has been shown that the predictor error profile is related to the magnitude and distribution
of observational noise in a deterministic system. Observing the change of this profile as the prediction
time is increased provides information on the observational noise and the chaos in the system. Pre-
dictors from reconstructed flows are capable of estimating the spectrum of unstable periodic orbits
with significantly less data than other methods. Using the information contained in the time ordering
of the data reduces the bulk of data required - the sampling rate and the length of the series may be
shortened (nearest neighbors may be farther away) relative to the requirements of dimension calcu-
lations. It does not, of course, reduce the need to explore the entire attractor. Nonetheless, the use
of reconstructed flows as discussed above should allow a much improved quantitative description of a
chaotic attractor from a given series of observations.
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