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INTRODUCTION

In this presentation we are concerned with fault detection in
a multisensor environment. We propose a novel approach to
determine the self consistency of the observed values from a
collection of sensors. While the original techniques were de-
veloped for deterministic chaotic systems, the generalizations
presented here apply to both deterministic and stochastic sys-
tems. We are interested in the case where a particular process
or system is observed by a large number of sensors, each mea-
suring some distinct characteristic of the system. In brief, our
approach distinguishes observations which correspond to phys-
ically realizable states from those which represent physically
nonrealizable states; the latter implying error in the observa-
tion (i.e. sensor error).

Before giving the details of the method, we illustrate it with
an intuitive example, the simple harmonic oscillator.
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For this “system” consider two sensors which measure the posi-
tion and velocity (the acceleration would be another observable
or measurement function for this system). Consider a plot of
the observed position z(t) against the observed velocity, v(t)
as in Figure 1; if these were true observations, the curve would
not be continuous, but a collection of arbitrarily close points.
Some in-the dynamical systems community would call this el-
lipse an attractor, others would argue that technically this is
not a true attractor. As we shall discuss stochastic systems
where it is agreed no attractors exist we will avoid the word
attractor where possible and, in its stead, consider an allowed
region. In this case the allowed region would consist of a band
of finite width centered on the ellipse in which all the states
of the system fall. The remainder of the plane is then the for-
bidden region. Our technique is then simply stated: given an
observation of the system, determine whether it is in a for-
bidden region of the plane. If so, then either the observation
is in error (i.e. a sensor is malfunctioning) or the system has
changed in some fundamental way In the simple harmonic os-
cillator, for example, consider the result if one of the sensors,
say the position sensor, sticks at a constant value. All obser-
vations then fall upon a vertical line as illustrated in Figure 1.
As the system evolves, the observation will leave the allowed
region along this line thus indicating that a sensor has failed.
Our technique is of interest because,as is shown below, it is ap-
plicable to systems far more complex than the simple harmonic
oscillator and sensor failure far more subtle than returning a
constant value. It has been tested on a number of chaotic sys-
tems (one example below) where the behavior of the system
appears to be quite complex and the individual sensors display
no linear statistical relationship.

Chaotic and periodic systems are deterministic in that, given
their (exact) position in phase space, the future and past state
of the system is defined for all time. For chaotic systems, any

error in the initial position will grow on average exponentially
fast, making long term prediction practically impossible and
giving these systems a complex appearance. Deterministic sys-
tems are contrasted with stochastic systems, where random
motion removes this determinism. In stochastic systems, the
location in phase space completely specifies the state of the
system, but not its future. At the close of this paper, it is
shown that the analysis presented below applies to stochastic
systems as well.

PHASE SPACE AND SENSOR, SPACE

An important property of the systems we shall discuss is the
number of degrees of freedom they possess. The simple har-
monic oscillator has 2; once position and velocity have been
given, then the state of the system is completely specified and
its evolution is determined by Equations 1 and 2. In general,
the state of a system with L degrees of freedom may be rep-
resented by a point in an L dimensional phase space. For de-
terministic systems, as noted above, one point in phase space
defines the complete future and past history of the system as
well as its present state; in many cases of interest, the observed
dynamics of the system lie on a manifold of dimension dy < L.
This is the case for the simple harmonic oscillator where L = 2,
yet the motion in phase space is confined to a one dimensional
closed curve (i.e. do = 1). In any case, specification of the L
components of the phase space vector x(t) uniquely defines the
present state of the system.

In most instances, direct measurement of all phase space vari-
ables is not possible and hence we cannot determine the current
state of the system (i.e. its true location in phase space). What
are accessible are the values of some measurement functions,
which will be called observations of the system. Symbolically,

ag(f) = M,'(X(t)) 7 Ti2eiisn s (3)

where we represent the observed value of the i** sensor at time
t by si(t). An observation reflects the current state of the
system, x(t), as viewed through the measurement function M;.

If multiple, independent sensors are available, one may con-
struct a sensor vector

s(t) = (81,52, 8n,) (4)

Just as every point in phase space will map onto a particular
value for an individual sensor s;(t), so each state of the system
maps into a single sensor vector s(¢). (Note that this map is not
invertible in general: a given sensor vector may represent sev-
eral states of the system. Such a vector is said to have multiple
preimages in phase space.) Similarly, the trajectory produced
by the evolution of the system in phase space is projected into
a trajectory in this sensor space. In fact, the entire allowed
region is mapped into the sensor space. If dy > n, then this
map must be many to one; nevertheless this image need not be
dense throughout sensor space. Points in sensor space which
have no allowed preimages will form forbidden regions, while
the image of the allowed region in phase space will define an
allowed region in sensor space.
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It is crucial to maintain the distinction between the state of the
system in phase space and the characterization of this state via
the sensors. The former we shall refer to as the state of the
system, the latter as an observation of the system. Implicit
is the understanding that the observation depends not only on
the state of the system, but also on the sensors. Thus while the
state of the system is unique and well defined, an observation
may be in error. We also emphasize that even in the case
of stochastic dynarmnics, forbidden regions may still exist. An
observation within a forbidden region indicates sensor failure.

Two approaches to error detection are presented below. The
first is a simple geometric way of determining whether a given
observation is in a forbidden region described above. The sec-
ond, a predictive method, applies when the number of sensors
exceeds the number of degrees of freedom being observed( i.e.
ny >> L, this condition is sufficient, but not necessary); in-this
case there is redundant information in the sensor vector (the
map from X to s becomes one to one) and we may determine
if a given sensor is working by seeing if we can “predict” its
value from the others.

In both approaches, the behavior of the system is compared
to the expected behavior of the correctly functioning system.
Rather than impose some a priori model of the system, how-
ever, the expected behavior is determined from a learning data
set taken over a period during which all n, sensors are operat-
ing appropriately. Thus no explicit model of the system
is required. The learning set provides a collection of sensor
vectors, denoted s(t},,,..),i = 1,2,..., N, which form the back-
bone of the allowed region. For clarity, the superscript i shall
be suppressed hereafter. i

METHOD I : THE GEOMETRIC APPROACH

To determine the reliability of an observation, S(tiest) of un-
known quality, one tests to see if it lies in the allowed region.
The simplest method to do this is determine its nearest neigh-
bor in the learning set, let this distance be é,,. If this sepa-
ration 1s “small”, the observation will be considered to be in
the allowed region, while the maximum acceptable distance,
&maz, Will depend on the observational accuracy with which
the system is viewed. Thus if 6,, < émaz, the observation is
considered valid. In other words, all points with a distance,
Smaz of any point in the learning set form the allowed region.
Explicitly, let

(o = min(ls(t!eat) s S(tfedf‘")l) (5)

where the minimum is taken over all vectors in the learning
set, S(tiearn). This will determine the nearest neighbor to this
observation from the learning set. Note that the components of
the vector separating the test point from its nearest neighbor
may be of use in determining a reasonable weighting for the
reliability of each sensor (once they exceed some statistically
determined lower cutoff).

Recall the allowed region of the simple harmonic oscillator. It
is clear from Figure 1 that the collection of points which pass
this test in this system form an elliptical ring of width 26,142
about the ellipse shown in the figure, assuming, of course, that
the number of points in the learning set is large enough to
cover the ellipse (i.e. so that the nearest neighbor distance for
points within the learning set itself is less than §pa..) Data
requirements are a serious consideration in implementing this
formalism.

As a more dynamically interesting system than the simple
harmonic oscillator, consider the Moore-Spiegel system. Orig-
inally proposed as a model of the motion of a parcel of ionized

gas in the atmosphere of a star, we will use the equations to
produce complex motions of a system in a 3-dimensional phase
space. The equations are (Moore and Spiegel, 1966):

dz

" : (6)
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da ‘
E+a_+(T—R+Rzz)v+Tz=0. (8)

where z, v and a are the position, velocity and acceleration of
the parcel. We shall consider the case R = 100.0 and T = 36.0
for which this system displays chaotic behavior. It is important
to note that when employing the analysis below we are not
assuming a knowledge of the form of these equations; they are
used only to produce the time series which are then analyzed
without reference to the underlying analytical model.

A typical time series of these three variables is shown in the
top three panels of Figure 2. It is far from obvious, upon
observation of this series, that a simple deterministic system
is producing them; standard statistical tests (e.g. the power
spectra) suggest that such series are complicated (see Moore
and Spiegel, 1966 and Smith, 1987). None the less, the motion
of the system in phase space is restricted to a very small region.
(In this case, it is an attractor and actually has zero volume
in 3-dimensional space!) Figure 3a’shows the same v() series
which is corrupted by pseudo-random noise (with a maximum
value of 10 % the range of the signal) added from the midpoint
of the graph onwards. The existence of this “error” is detected
in Figure 3b, a graph of 6., with time. Similarly, Figure 3c
is again the v(t) series, this time corrupted with a sinusoidal

error with a frequency comparable to that of the signal; Figure
3d, the corresponding 6., graph, shows that this type of error
is detected as well.

One of the restrictions of this approach is the amount of data
required to outline the allowed region, and this is a system de-
pendent problem. A less data hungry method is available when
the number of independent sensors is greater than the number
of active degrees of freedom. Before giving the details of this
method, we note that for deterministic systems, time delays of
a single sensor value may be used in place of additional sensors.
That is, s;(t) = s;(t — 7) may be used in addition to s;(t). This
result has a firm mathematical footing (Takens, 1981) and has
contributed to the advance of analysis of nonlinear dynamical
systems (Packard, et al, 1980). A description of this approach
and discussion of the selection of  are beyond the scope of
this contributions, but may be found in Eubank (1990) along
with an introduction to chaotic systems. We shall find this
approach useful in demonstrating method II, as it avoids the
need to construct artificial measurement functions.

METHOD II : THE PREDICTIVE APPROACH

Here we restrict attention to the cese where n, > L, that
is where there is a unique relation between the location of
the system in phase space and its image in sensor space and
this property is maintained if any one sensor is turned off. In
this case there is redundant information in the sensor vector;
exploiting this nonlinear relationship, in particular observing
when it fails, allows an evaluation of the quality of the obser-
vation. Thus we require a method of detecting deviations from
a complex surface of arbitrary dimension defined on a limited,
unevenly spaced data set. To accomplish this we apply an
interpolation of the surface using radial basis functions. This
approach has proven quite powerful in predicting the dynamics
of chaotic systems in both numerical systems (Casdagli, 1989,



Smith 1990) and laboratory systems(Smith and King,1990).
Here we are presented with the simpler problem of predicting
the values of different measurement functions at the same time.

Consider each observation to give rise to a basis vector consist-
ing of all sensor values save the one to be tested. Let the sensor
space have dimension M,. Denote the basis vector as x; and
the remaining sensor as y;j = $i,,,,- Thus X; is a projection of
s; containing all its components except the component due to
the ‘l‘u,g Sensor.

The predictor is constructed from a learning set consisting of n
distinct base vectors (xj,j = 1,2,...,n) and the corresponding
y; taken when all the sensors are functioning properly.

The goal is to determine a function f(xi): RM:71 o R! such
that

f(x5) = ;- ()
We will consider predictors of the form

£ =3 Ml = xill) 10)

i=1

where ¢(r) are radial basis functions (Powell, 1985) and the A;
are constants which are uniquely determined by equations 9)
provided the matrix

Aij = (|l — x510) (11)

is nonsingular. This is always the case when the x; are distinct
and the ¢(r) are radial basis functions (Powell, 1985, Michelli

1986). To date, our examination of this approach has been
restricted to functions of the form

$(r)=(r"+)7"

for # > —1 and aff # 0.

(12)

This method is demonstrated in Figure 4. In this case we have
used a sensor vector:

s = (2(t), 2(t — 1), 2(t — 2), 2(t — 37))

where 7 = 0.100 . (Note that T is large compared to the
dynamical time of the system, this is not an approximation of
the derivative.) The solid line shows the observed evolution of
the system, while the boxes show the time 7 prediction of the
signal. In Figure 4a, the uncorrupted signal is demonstrated,
while the error is shown in 4b; similar error graphs for additive
white noise (Figure 4c) and sinusoidal (Figure 4d) errors are
also shown. In the later two, the sensor error in introduced at
the midpoint of the graph. All error figures are to the same
scale. In this example we have used 256 points in the learning
set.

FAULT LOCATION

The methods outlined above are sufficient for the detection of
sensor failure but the identification of which sensor is faulty re-
quires more work. For Method I, the analysis may be repeated
omitting one sensor at a time from the sensor vector; if the
magnitude of 6, is dominated by contributions from a single
component, then that sensor is the one in error. For Method
11, we propose the following approach for identifying the failed
sensor. It is based on the observation that if predictions are

made for a pair of sensors at a time (deleting both from the
input basis vector) then, when one sensor fails, the only good
predictions will be for-its partner. This follows from the obser-
vation that, as the failed sensor cannot itself be predicted and
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as its use will introduce error into the basis vector when esti-
mating the other s;’s, the only case of clean prediction occurs
when the failed sensor’s output is omitted from both the image
and basis vector. This will narrow the choice to two sensors, a
situation in which a good prediction is realized only when the
valid partner is predicted thus identifying the failed sensor.

THE APPLICATION TO STOCHASITC SYSTEMS

Consider now the applicability of this approach to stochastic
systems. To keep things simple, consider a stochastic system
with two degrees of freedom; a single sensor directly measuring
either of these variables (assuming this could be done) would
reveal smooth random variations within some bounds. Now
consider this process as observed by a collection of n, >> 2
measurement functions whose outputs are linearly indepen-
dent. The motion in this n,-dimensional sensor space could
be quite complex, exploring macroscopically all n, directions;
nevertheless, there are still only two variables which determine
all the observables of this system. In principle, a knowledge
of these two variables is sufficient to determine (“predict”) the
simultaneous value of any measurement function of this sys-
tem. This demonstrates the applicability of Method II. When
considering the application of Method I to this system, we are
faced with the initially paradoxical observation of a stochas-
tic system whose motion is on a low dimensional surface. The
paradox is easily resolved with the realization that a multiple
sensor probe considers a constant time slice of data; the motion
in time is stochastic - hence the method of time delays is not
as useful for this system- but the set of points accessible to the
system in sensor space (at any given time) is very restricted,
in fact, low dimensional. This is sufficient to define a nontriv-
ial allowed region and justify the approach of Method I. (It
also creates difficulties in interpreting dimension calculations
in multi-sensor reconstructions.)

ONCLUSIONS
We conclude with a few observations

a) As noted above, the dynamics of a system is often restricted
to a manifold of dimension less than L. Although it is not
crucial that this be the case, the lower the volume of the allowed
region, the more computationally efficient our method will be,
in general.

b) The data requirements for Method II are significantly less
than those of Method I which effectively reconstructs geometry
from a time series (see Smith, 1988), the reasons why this is
the case are discussed in Smith (1990).

c) When applied to observations of deterministic systems, the
approach may be viewed as determining whether or not the
observation corresponds to a point on the attractor upon which
the system’s dynamics lie. In this case, this information may be
used to make predictions of the future behavior of the system.
Obviously, such predictions may provide a valuable aid to both
the evaluation and control of such systems.

d) It is important to note that the role played by the sensors in
the above analysis need not physically correspond to true sen-
sors; the numerical values used (or estimated) could be input
rates, control instructions, and so on. For example, in a single

input multiple output system, the learning set might be con-
structed from a data set where both the input and outputs were
monitored, the technique itself could then be used to estimate
the unknown input from later measurements of the outputs.

An approach similar to this has been discussed by Casdagli
(1990).
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We have introduced a new method for error detection when
multiple sensors are used to observe a dynamical system. Sim-
ply put, the multiple sensor output is considered as a vector
in a reconstructed phase space. The deviation of this vector
from allowed regions of this space indicates either sensor er-
ror or a change in the basic properties of the system. This
approach appears promising as it directly senses the nonlinear
relationships between the different sensors. This means that
sensor faults may be detected even in cases where the individ-
ual sensor outputs maintain the correct statistical properties.
Additional applications to both numerical and physical systems
are currently being investigated.
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Figure 1. The phase space of the simple harmonic oscillator. Position is given along the x

axis and velocity along the y-axis.
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Figure 2. A sample time series for the Moore-Spiegel system with R = 100 and T = 26.
(a) =(¢), (b) v(t), and (¢) a(2).
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Figure 3. An evaluation of the geometric method as applied to the Moore- Spiegel system.
The panels show (a) v(t) and the nearest neighbor distance, §(t), for the cases where (b)
pseudo-random noise and (c) a sinusoidal term have been added to the observed v(t) values
for ¢ in the right half of panels. The presence of this sensor error is clearly refected by the
increase in §(t). In each case the additional term had a maximum value of 10% the range
of the data; a 1 % error was easily detected.
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! Figure 4. An evaluation of the predictive method as applied to the Moore- Spiegel system.
In (a) the system is shown as a solid line, the predictions are boxes. The lower 3 panels .
) show the estimation error for (b) the error free signal, (c) with an additive white pseudo-
random noise and (d) with an additive a sinusoidal term. The additive terms were included
! at the midpoint of each graph as in Figure 3 and they are detected in the increase in the

estimation error. In this predictor, 256 points were used with ¢(r) = r.



