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Abstract

Singular spectrum analysis (SSA) provides a robust method of separating an arbitrary signal from “white” (independent,
identically distributed) noise. In the presence of “coloured” noise, or any autocorrelated process, high-variance components
of the noise can confuse the singular value decomposition, thereby obscuring genuine signals which are, in principle,
detectable. A generalization of SSA is presented which yields both an optimal filter to discriminate against an arbitrary
coloured noise and an objective method of quantifying uncertainty in signal reconstruction. The algorithm is applied to a
simple synthetic signal-separation problem and used to resolve a degeneracy in the SSA of interannual and interdecadal
variability of the Earth’s global mean temperature. © 1997 Elsevier Science B.V.

1. Singular spectrum analysis

Singular Spectrum Analysis (SSA) is widely
used to extract qualitative dynamics from noise-
contaminated data [1-4]. The technique may be
visualized as sliding a window of width M down a
series of d of length N and determining the orthog-
onal patterns which best capture the variance in the
views of the series thus obtained. These “empirical
orthogonal functions” (EOFs) are eigenvectors of the
M x M lag-covariance matrix Cp,

1
(Cp)ij = — DDy

kmax

] &=
=7 Zdi+k—ldj+k—1s (1)

max k=1

where ! kmax = N — M + 1 and D is the “augmented”
dataset, Dy; = dj«—. For a stationary process,
E£((Cp)j) is the process covariance at lag li — jl.

If d consists of the sum of two ergodic, linearly
independent processes (called, for convenience, “sig-
nal” and “noise”) with sample lag-covariance matri-
ces Cs and Cg then,

E(Cp) =E(Cs) + E(CR). (2)

If the noise is “white” (§(Cr = Cn = ¢?I) and
£(Cs) is non-diagonal, then the eigenvectors of
E(Cp) are the eigenvectors of £(Cg) with each
eigenvalue increased by o>. The high-ranked EOFs
of Cp (those with the largest eigenvalues) provide a
consistent estimate of the high-ranked EOFs of Cs:
they converge to these “signal EOFs” as N — oc.

! We use the summation convention of Ref. [1], for reasons
explained in Refs. [5,6].
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Selected EOFs from conventional SSA of test series
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Fig. 1. Selected EOFs with high-ranked eigenvalues from conventional SSA of test series. EOFs | and 2 form a relatively pure sine-cosine
pair, but are not associated with any signal, indicating the danger of using the properties of EOFs to identify oscillations. EOFs 8 and 9
contain most of the signal variance, but EOF 7 is close to degenerate with both of them, corrupting EOF 9.

A projection onto the « highest-ranked data EOFs
provides an optimal linear filter for this noise: the
signal-to-noise variance ratio is maximized in the
filtered augmented dataset

D = DEpLYE], (3)

where Ep contains the data EOFs arranged column-
wise in order of decreasing eigenvalue and L) is di-
agonal with ij") = 1ifi < «, and L\ = 0 otherwise.

If the noise is anything other than white (if
Cn # a*I) then none of these optimality properties
hold. High-ranked EOFs of Cp need have nothing to
do with the EOFs of Cs. In particular, sine-cosine
EOF pairs, which for reasons given in Ref. [3], are
frequently used to identify modulated oscillations,
may occur in the absence of any genuine oscillatory
signal [6,7]. A variety of signal selection crite-
ria [4,8] have been proposed for SSA based on the
expected properties of Cs and Cg in the pure-signal
and pure-noise limits. Because the eigenbasis of the
sum of two matrices does not, in general, share eigen-
vectors with either of the two constituent matrices,
these criteria cannot be justified; the appearance of
an EOF pair “corresponding” to an oscillation may

depend as much on luck and a judicious choice of the
window width as it depends on the signal.

Consider a “signal” which consists of stochastically-
triggered sinusoidal bursts, with unit initial araplitude,
period 5.5 units and decay-time 30 units, contaminated
with unit variance first-order autoregressive - AR(1)
- noise: the test series shown in Fig. 1 of Ref. [6].
Conventional SSA of this series with M = 30 gives
only one sinusoidal EOF with a period equal to the
oscillation (number 8 in Fig. 5 of Ref. [6]). The
other EOF required for an optimal filter for this sig-
nal is scrambled with lower-frequency components
of the noise: EOFs 7 and 9 (shown in Fig. 1) are
almost equal, so the decomposition is undetermined
to rotations within the subspace which they define.
Both contain power at the signal frequency, so neither
provides a consistent estimate of the dominant signal
EOFs. How can this degeneracy be lifted?

2. Generalizing SSA to deal with coloured noise

Since the eigenvectors of Cp are consistent estima-
tors of the eigenvectors of Cg if and only if the noise
is white, we introduce a “pre-whitening” transforma-
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Fig. 2. Eigenspectrum of Cf,. Squares (diamonds) show signal-to-noise ratio in the test series on signal-to-noise maximizing EOFs, Ep,
which are predominantly symmetric (anti-symmetric) about the mid-point of the window. Bold symbols indicate EOFs whose maximum
correlation with a pure sinusoid is > 0.85. Vertical bars show the expected distribution of the noise variance in these eigendirections: a
surrogate ensemble size of O indicates that the y? parametric distribution has been used (see text).

tion, as in generalized regression or canonical (co-)
variance analysis [9], and recently applied to spatial
EQOFs by Thacker [ 10,11]. The expected data variance
to noise variance ratio (loosely termed the “signal-to-
noise ratio”) in the state-space direction defined by
the vector e is
_ eTCDe

~ eTCyne’

(4)

Given the noise covariance, Cy, is positive-definite,
with eigenvalues forming the diagonal elements of Ay
and eigenvectors Ey, we define a coordinate transfor-
mation
¢ = A’Ele, e=EnAy'"%. (5)
In these transformed coordinates, the noise has equal
variance in all directions, so

_eTCLe 6)
p= eTe!
where C[, and Cg are the transformed covariance ma-
trices, defined thus,

C' = APELCENARA )

The vector ¢’ which maximizes p in Eq. (6) is sim-
ply the eigenvector of Cf, with the largest eigenvalue.
By virtue of the coordinate transformation, £(Cp) =
E(C5) +1, so the eigenvectors of C[, are consistent
estimators of the eigenvectors of C§, in the sense de-
fined above. Equating the e’ with the eigenvectors of
Cp, (the columns of Ef,, arranged in order of decreas-
ing eigenvalue) thus provides an optimal and consis-
tent set of signal-to-noise maximizing vectors, with
signal-to-noise ratios given by the eigenvalues

Ap = EJCLED. (8)

Fig. 2 shows the eigenspectrum of C}, for the test se-
ries. The first two eigenvalues contain more variance
than expected in pure AR(1) noise, lying above the
99.5th percentiles of the distribution of power in these
state-space directions expected from an AR(1) pro-
cess [6]. Note that the noise has the same expected
variance in all directions in these transformed coor-
dinates, and we have neglected the selection effect
(compression of variance into high-ranked EOFs) -
see Ref. [6] for details.

To facilitate the interpretation, we transform back
to our original coordinates,
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S;gnol&to noise maximising EOFs of test series
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Fig. 3. Signal-to-noise maximizing EOFs of test series. EOFs 1 and 2 contain the 5.5-unit period signal and EOFs 3 and 4 now contain
the first harmonic, which was almost completely obscured in conventional SSA.

Ep = ExAy '’E}, (9)

Fig. 3 shows Ep for the test series, each renormalised
for clarity. Note how the two highest-ranked EOFs
are now reasonably “clean” sinusoids: their maximum
correlations with a pure sinusoid are 0.96 and 0.93,
while the corresponding values for the closest pair in
Fig. 1 (EOFs 8 and 9) are 0.98 and 0.56.

The columns of Ep (the desired signal-to-noise
maximizing patterns) are orthonormal in the metric
defined by Cy, rather than orthonormal in the con-
ventional sense [10,12], that is EDEE = Cgl and
ELCNEp = I. We refer to these vectors as “signal-to-
noise maximizing EOFs”, although “noise” here rep-
resents any process we wish to discriminate against.
The diagonal elements in the projection of a co-
variance matrix onto these S/N maximizing EOFs,
Ap = ELCpEp, represent signal-to-noise variance
ratios. These are proportional to the absolute variance
if and only if the noise is white. Thus standard EOFs
are a special case of S/N maximizing EOFs when
CN = 0'21.

The crucial property of S/N maximizing EOFs
is that their expected orientation is independent of
the noise variance, provided Cn correctly reflects
noise autocorrelation. They thus provide a consis-

tent estimate of the patterns which we would obtain
by analysing the same signal in the absence of any
noise, and an optimal linear filter for the reconstruc-
tion of that signal in the presence of noise with this
correlation structure.

To confirm that S/N maximizing EOFs consistently
provide an improved estimate of the true signal EOFs,
we generate an ensemble of realisations of the test pro-
cess by retaining the first 12 000 200-point segments in
which at least one oscillatory burst occurs > . We then
apply both conventional and S/N maximizing SSA to
each segment and correlate the resulting EOFs with
the two dominant EOFs of the underlying ncise-free
process. In each case, we select the two EOFs which
are best correlated with these signal EOFs and record
their rank in the eigendecomposition.

Fig. 4, left panel, shows that the EOFs from con-
ventional SSA which correlate most closely with the
pure-signal EOFs typically occur between 5 and 10 in
the eigenvalue rank-order, and that their average cor-
relation with the signal EOFs ranges between 0.6 and

2In a stochastic process, there is a chance that no burst will
occur in a 200-point segment. Since the influence of bursts from
previous segments is small, we would not expect any algorithm
to distinguish most burst-free segments from pure noise.
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Fig. 4. Histogram showing how S/N maximizing SSA (right panel) outperforms conventional SSA (left panel) in identifying patterns
which correspond to the true “signal” EOFs. In each member of an ensemble of 12 000 segments containing damped sinusoidal oscillations,
the two EOFs which correlated best with the pure-signal EOFs were selected. Bars show the distribution of average rank (x-axis) and
average correlation with the pure-signal EOFs (y-axis) of these EOF pairs. A perfect algorithm would show a single non-zero peak in the
far corner of the plane, corresponding to a mean rank of 1-2 and a mean correlation of 0.95-1.0. S/N maximizing SSA clearly comes

much closer to this ideal result.

1.0, with the most probable correlation being ~ 0.8.
The fact that EOFs occur relatively low in the rank-
order means that some additional test will be required
to identify them, and even if they are correctly identi-
fied, a relatively low correlation with the signal EOFs
means that they will not provide an effective filter for
separating signal from noise. In contrast, Fig. 4, right
panel, shows that the S/N maximizing EOFs which
correlate best with the pure-signal EOFs are almost
invariably ranked at the top of the eigendecomposi-
tion and in the majority of cases the mean correlation
with the signal EOFs is close to 1.0. With this revised
approach to SSA, the chance of obtaining an effective
filter for separating signal from noise in the highest-
ranked EOFs is significantly enhanced.

Fig. 4 shows that the uncertainty in the orientation
of the two highest-ranked S/N maximizing EOFs is
low (they almost always point in approximately the
right direction), although the uncertainty in the noise
variance in individual state-space directions (indicated
by the vertical bars in Fig. 2) is relatively high. A
number of authors (e.g. Ref. [13]) have interpreted
similar “error bars” as indicating the uncertainty in
the eigendecomposition itself. This is incorrect: the
correct treatment of uncertainty in the orientation of
the individual EOFs must be based on the fact that Cp
conforms to a Wishart distribution, details of which
we will consider elsewhere.

When the properties of the noise are unknown, the
“correct” specification of Cy remains a problem. Sev-
eral observations are relevant here. First, unlike con-
ventional EOFs, the expected orientation of S/N maxi-
mizing EOFs is independent of the total noise variance
which can therefore be grossly in error without af-
fecting the procedure. Second, for high signal-to-noise
patterns, errors in the noise autocorrelation structure
do not have a significant effect on the orientation of
the highest-ranked S/N maximizing EOFs, due to the
nonlinearity of the eigendecomposition procedure: in
this example, we can increase and decrease the char-
acteristic decorrelation time of the noise by a factor
of two without affecting the shape of highest-ranked
S/N maximizing EOFs. Significance estimates are, of
course, affected, so standard SSA supplemented by a
significance test is a poor substitute for S/N maximiz-
ing SSA if the noise properties are in doubt. Third,
the specification of Cy may be an integral part of the
problem to be solved. For example, if we are look-
ing for patterns in an observational dataset which are
inconsistent with “natural climate variability” as sim-
ulated by a climate model, then Cy may be computed
directly from a control run of the model following
the procedure of optimal fingerprinting [ 14]. Finally,
it may be possible to frame the detection problem in
terms of identifying and characterising a change in
the dynamics of the system [15,16]. This is a well-
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established approach to fault detection and diagnosis
in mechanical systems - see Ref. {17], and references
therein. In this case, Cy is estimated from the histor-
ical “normal” system behaviour.

Since the eigendecomposition in Eq. (8) ranks
eigenvectors by signal-to-noise rather than by vari-
ance, problems of degeneracy between EOFs cor-
responding to the “signal” and high-variance, low-
frequency components of the noise do not arise. Dif-
ferent signals with equal signal-to-noise ratios may,
however, be degenerate. While such degeneracies are
unimportant in constructing an optimal filter, they
complicate signal separation. If the noise is red, how-
ever, then components which have the same signal-
to-noise ratio are likely to have different variances,
resolving any degeneracies. We construct the filtered
transformed covariance matrix

Cy* = ELApL™WE], (10)

with L(<) defined as above to extract the « highest
signal-to-noise components; back-transform to obtain
a rank-« covariance matrix, which we re-diagonalize,

CyY = ExAyCE Ay ED (1D
=EPALERT. (12)

This represents a variance-maximizing rotation, since
the « elements of EI()") with non-zero eigenvalues span
the subspace defined by the « highest-ranked S/N
maximizing EOFs, with the variance in each given
by the corresponding eigenvalue (diagonal element of
A](D") ). These rotated S/N maximizing EOFs are or-
thonormal in the conventional Euclidean metric. This
two-stage procedure is reminiscent of rotated principal
component analysis (RPCA [18]), except that filter-
ing is performed on the basis of signal-to-noise, rather
than on the basis of variance. RPCA will break down
if too many EOFs need to be retained in order to in-
clude important, but low-variance, components [19].
The procedure outlined here identifies components di-
rectly and has the additional advantage of consistency:
the expected orientation of the ES” is independent of
the noise variance. This is not the case in RPCA.

3. Quantifying uncertainty in
signal-reconstruction

The basic assumption underlying SSA is that each
row of the augmented dataset D (each “view through
the window™) can be well described by the linear sum
of a small number (kx < M) of patterns, denoted by
the columns of E(*), each modulated by a time series
of coefficients (“principal components”, or PCs), de-
noted by the columns of P(*),

D = PWEM®T 4 noise, (13)

Given the noise covariance, Cy, the best linear un-
biased (BLUE) estimators for the elements of P(*)
are given by the generalized linear regression formu-
lae [9],

P = DCJ'E® (EWTCHEW) . (14)

The time series of coefficients obtained in this way are
called generalized PCs [10].

The estimators P are blue irrespective of the nor-
malisation or orthogonality of the E(*, allowing a
complete separation between the procedure for deriv-
ing the E®) and the estimation of the elements of
P(<)_Eq. (14) may be used for a signal-reconstruction
based on standard EOFs or the S/N maximizing EOFs
described here, the only condition being that no two
EOFs are collinear. If S/N maximizing EOFs are used,
Eq. (13) yields generalized PCs identical to those pro-
posed by Ref. [ 10]. We believe there is a gain in sim-
plicity in separating the EOF-estimation step and the
PC-reconstruction step, particularly given prior infor-
mation to constrain the EOFs, but in the absence of
such information the two approaches are essentially
equivalent.

In the long series limit (N >> M), the variance (un-
certainty) in the PCs is given by

E((PW — Py (B — PW)y,)
= (EWTCL'EW) 1. (15)

With a short series, Eq. (15) will be biased due to sam-
pling uncertainty in E(*, This bias can be reduced by
using independent data to estimate E¢) and P(*), but
even a moderately biased error-estimate remains use-
ful, since the band-pass filtering effect of SSA can give
deceptively regular and physical-looking PCs even in
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SSA of global temperatures 1901-90
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Fig. 5. Conventional SSA of 1901-90 global temperature record, with noise distributions computed for an AR(1) process after EOFs 1
and 2 (corresponding to the trend) have been eliminated from the noise-parameter-estimation. Note how EOFs 3-5 and 6-§ form two,
almost completely degenerate, triplets. The noise distribution bars indicate EOF 4 as significant (with associated period 5 years). but the
other member of the pair is scrambled with a low-frequency component of the noise.

the absence of any signal. Since the PCs are a form
of weighted moving average of the original data se-
ries, erroneous excursions will, by construction, per-
sist over a time scale defined by the window width M.
An objective measure of uncertainty in PCs is there-
fore essential, particularly if they are to be used for
empirical prediction [4,20].

Because the columns of E¢*) need not be mutually
orthogonal, Egs. (14) and (15) also provide a natural
method of estimating PCs and associated uncertain-
ties in the presence of data gaps. A further applica-
tion would be to employ the S/N maximizing EOFs
to form a natural set of bases of increasing dimension,
each consisting of the «x highest signal-to-noise com-
ponents, from which to construct nonlinear inverses to
linear filters, as in Ref. [21], and in other nonlinear
noise-reduction algorithms.

4. Resolving degeneracies in the analysis of
climate time series

In the exchange which originally focused attention
on the naive application of SSA to signal detection in

climate research, it was observed [22] that the EOF
pair advanced as evidence for an interdecadal oscilla-
tion in global temperatures [23] was unstable to mi-
nor changes in the length of the series analysed (or,
indeed, to the summation convention used in Cp).
The problem was one of degeneracy [24], the power
spectral density at interdecadal periods is close to that
in the low-frequency (~ S-year) component of the El
Nifio/Southern Oscillation (ENSO) signal. Thus the
eigendecomposition is underdetermined to a rotation,
making results extremely unstable. Such degeneracies
have nothing to do with the existence of determinis-
tic low-frequency components in the generating pro-
cess. Statistical tests show that the interdecadal com-
ponent of global temperatures is not distinguishable
from AR(1) noise, while the El Nifio/Southern Os-
cillation (ENSO) signal is only significant at around
the 90% level [25].

The analysis of the 1901-90 global temperature
record [26,27] also provides an interesting example
of how standard SSA can fail to distinguish a genuine,
albeit weak, signal (ENSQO) from high-variance, low-
frequency noise (the interdecadal component): this
shortcoming is corrected through the application of the
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Fig. 6. EOFs 1-8 from conventional SSA of 1901-90 global temperature record. EOFs 3-8 all contain power at 5-year and (inuch less
obviously) interdecadal periods, but because they are scrambled due to degeneracy, only EOF 4 is anything like a pure sinusoid.

technique presented in this paper. Fig. 5 shows con-
ventional SSA of 1901-90 global temperatures [28].
At 5-year periods, only one eigenvalue {number four
in the rank-order) appears above the 97.5th percentile
of the ¥ AR(1) noise distributions (unlike Fig. 2,
these distributions are not identical, since the expected
red-noise variance in a particular EOF depends on the
dominant frequencies associated with that EOF). The
other member of the pair is scrambled with the in-
terdecadal component of the noise, so no sine-cosine
EOF pair is observed at either frequency. The eight
highest-ranked EOFs are shown in Fig. 6.

The noise in Fig. 5 was estimated by eliminating the
trend (EOFs 1 and 2 from conventional SSA, which
are significant against red noise) and fitting the AR
parameters to the lag-0 and lag-1 covariances of the re-
mainder [6]. We now use this noise model to compute
S/N maximizing EOFs as described above. Because
we are obliged to estimate the noise model from the
data, the possibility remains that it may be incorrectly
specified. We cannot, however, reject the hypothesis
of a trend-plus-AR( 1) -noise for this data, so the pro-
cedure is internally consistent. In contrast, we can re-
ject the hypothesis that the residuals are white noise
at a very high confidence level. The use of standard

SSA, which assumes white noise, in such an analysis
is therefore incoherent.

Ratios of data variance to expected noise variance
on the S/N maximizing basis Ep (eigenvalues Ap, of
Cp,) are shown in Fig. 7. Five ratios appear above
the 97.5th percentiles of the noise distribution, but
we know that some (if not all) of these excursions
may be due to artificial compression of variance into
high-ranked EOFs. A more conservative test, based
on the EOFs of the null-hypothesis [ 6], still indicates
that S/N maximising EOFs 1-4 are significant at the
97.5% level.

The first four S/N maximizing EOFs are plotted in
the upper two panels of Fig. 8. They are clearly domi-
nated by the secular trend and the 5-year ENSO signal,
but we also note that there is some cross-contamination
between them since, ranked on the basis of signal-to-
noise rather than variance, these two components are
close to degenerate with each other. EOF-2 in par-
ticular contains power at 5-year time scales. To sep-
arate out the two components, we apply a variance-
maximizing rotation as given by Eqs. (10)-(12) with
« = 4. The rotated EOFs are shown in the lower two
panels of Fig. 8: a much clearer signal-separation has
been achieved. The problem of degeneracy between
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S/N maximising SSA on 1901-90 temperatures
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Fig. 7. Eigenspectrum of Cp, for the global temperature series, plotted against signal-to-noise in the corresponding S/N-maximizing EOF. Ver-
tical bars show the 2.5th and 97.5th percentiles of the distribution of power expected from the noise component of a trend-plus-AR(1)-noise
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Fig. 8. Highest-ranked 4 S/N maximizing EOFs, before (upper panels) and after (lower) a variance-maximizing rotation separates the
5-year ENSO signal from the trend.
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the 5-year component of ENSO and the interdecadal
component of the noise is completely resolved. S/N
maximising SSA has no trouble distinguishing be-
tween them because the signal-to-noise ratio is very
different at these two frequencies.

Since the interdecadal component is indistinguish-
able from noise, empirical prediction of interdecadal
temperature variations [4,20] cannot be justified.
Even if we had an a priori reason to believe in a
deterministic interdecadal oscillation, application of
Eq. (15) reveals that the phase of this component
cannot be determined from the data at any point in
the 136-year global temperature series (or over any
but the earliest years of the 335-year Central England
Temperature series [29]). It is therefore unrealistic to
attempt SSA-based decadal prediction of these data,
since such forecasts depend entirely on the estimated
phase near the current end of the series.

5. Summary

We have presented a simple generalisation of SSA,
allowing a self-consistent treatment of problems in-
volving autocorrelated noise by determining patterns
(EOFs) which maximize the signal-to-noise ratio
rather than maximizing variance. Our approach re-
solves ambiguities which arise due to degeneracies
between high-frequency signals and low-frequency
components of the noise. It may, however, introduce
degeneracies between different signals with similar
signal-to-noise ratios. These are resolved in a two-
stage procedure, filtering first by signal-to-noise, then
by variance. Noting that an SSA based reconstruction
from a limited number of EOFs can appear decep-
tively “physical” even in the absence of any signal,
we have also proposed a method of quantifying un-
certainty in such reconstructions. This is essential if
SSA is to be used for empirical prediction.
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