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Abstract

Inasmuch as Lyapunov exponents provide a necessary condition for chaos in a dynamical system, confidence bounds on
estimated Lyapunov exponents are of great interest. Estimates derived either from observations or from numerical integrations
are limited to trajectories of finite length, and it is the uncertainties in (the distribution of) these finite time Lyapunov
exponents which are of interest. Within this context a bootstrap algorithm for quantifying sampling uncertainties is shown to
be inappropriate for multiplicative-ergodic statistics of deterministic chaos. This result remains unchanged in the presence of
observational noise. As originally proposed, the algorithm is also inappropriate for general nonlinear stochastic processes,
a modified version is presented which may prove of value in the case of stochastic dynamics. A new approach towards
quantifying the minimum duration of observations required to estimate global Lyapunov exponents is suggested and is
explored in a companion paper.c©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The fundamental role played by Lyapunov expo-
nents in defining chaotic dynamics [1] has stimulated
the search for a statistical framework within which
the accuracy of estimated exponents might be quan-
tified. In this paper, we demonstrate that the frame-
work proposed in [2], if interpreted as a bootstrap ap-
proach, fails to provide reliable bounds for estimates
of either finite time Lyapunov exponents [3] or global
Lyapunov exponents; both of these exponents are de-
fined in Section 2. Section 3 introduces several dy-
namical systems and the bootstrap, a general approach
to estimate the remaining uncertainty in an estimated
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statistic by employing resampling methods. Following
Künsch [4], we note that the application of the boot-
strap is restricted to data from a proper underlying
process (stationarity, weak dependence or short term
dependence) and a well-behaved functional. Both the
conditions on the process and those on the statistic
are violated in the case of Lyapunov exponents in de-
terministic chaotic systems. First, successive observa-
tions of these chaotic processes are neither indepen-
dent nor weakly dependent; certainly, whenever Tak-
ens’ Theorem [5] can be applied, the use of a bootstrap
must be carefully justified. Second, Lyapunov expo-
nent estimates rely on the product of matrices. In gen-
eral, matrix multiplication does not commute (except
in one dimension). Thus the bootstrap is inappropriate
for multiplicative ergodic functionals of deterministic
dynamical systems.
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The successful application of the bootstrap hangs
both on the nature of the underlying process and on
the properties of any noise. If the noise is simply inde-
pendent and identically distributed (IID) measurement
uncertainty (observational noise), then the bootstrap
approach remains inappropriate, as shown in Section
3.1. In Section 4, it is argued that it is also inappro-
priate for the general class of stochastic systems dis-
cussed by Bailey et al [6], although a modified boot-
strap approach is suggested which may prove useful
in these stochastic systems with positive Lyapunov ex-
ponents (these systems are called aleatoric [7] in order
to distinguish them from deterministic chaos).

An alternative approach for quantifying whether fi-
nite time Lyapunov exponents might have converged
towards their global counterparts is suggested in the
last section. This approach is investigated for a variety
of dynamical systems in a companion paper [8] here-
after referred to asPaper II. Both papers are concerned
with “small” time scales given information along a tra-
jectory which is itself of only finite duration. The main
results of the current paper are that the framework of
Gençay [2] read as a bootstrap is inappropriate for de-
terministic chaos, and that this is also the case for a
wide class of stochastic systems. In addition, two con-
flicting definitions of “Local Lyapunov Exponents” are
distinguished in Section 3.1.1, the importance of dis-
tinguishing between observational noise and dynamic
noise is reiterated, and a new approach towards identi-
fying whether the given observations might be of suf-
ficient duration to obtain a good estimate of a global
Lyapunov estimate is suggested.

2. Finite-time Lyapunov exponents

Lyapunov exponents are defined through the infinite
time behaviour of infinitesimal uncertaintiesεεε about
the statex of a dynamical system in anm-dimensional
state space [5]. The linear propagatorM(x, 1t), also
called the tangent map, evolves any infinitesimal initial
uncertaintyεεε0 ∈ Rm aboutx(0) forward for a time1t

along the nonlinear trajectoryx(t),

εεε1t =M(x, 1t)εεε0. (1)

In continuous time systems (flows) wherėx =
F(x),M(x, 1t) is defined by simultaneous integra-
tion of the nonlinear and the first variational equations;

in discrete time systems (maps) wherexi+1 = F(xi),
the one step tangent map is simply the Jacobian:
M(x, 1t = 1) = J (x). If we interpret1t as the
fundamental propagation time of the problem at hand
(be it a sampling time, iteration time, or integration
step size) andk as an integer number of propagation
steps, then for eachk and eachx we have them × m

matrices:

O(x, k1t) = [M(x, k1t)TM(x, k1t)]1/(2k1t) (2)

and

O(x) = lim
k→∞
O(x, k1t), (3)

whereAT indicates the transpose ofA. Oseledec [9]
proved that if the limit ofk → ∞ exists, then under a
wide range of conditions the eigenvalues ofO(x) are
independent ofx for almost allx in the same basin of
attraction. Anm dimensional dynamical system thus
hasm Lyapunov exponents,Λi, i = 1, 2, . . . , m de-
fined [5] via ei, the eigenvalues ofO(x), as Λi =
log2(ei), i = 1, 2, . . . , m; by conventionΛi ≥ Λj for
i < j. The eigenvalues of the matrixMTM are sim-
ply the squares of the singular values ofM. Thus in
the limit k → ∞, the logarithm of the first singular
value ofM(x, k1t), σ1, approaches the first global
Lyapunov exponent,Λ1:

Λ1 = λ
(∞)
1 ≡ lim

k→∞
1

k1t
log2(σ1). (4)

Note that all logarithms are taken as base two, thus
the exponents have units of bits per unit time (1t).

Following Lorenz [3] and Abarbanel et al. [10], we
use theσ

(k)
i (the singular values of the tangent map

M(x, k1t)) to define1 finite time Lyapunov exponents
as

λ
(k)
i (x) = 1

k1t
log2(σ

(k)
i (x)). (5)

For clarity, we shall often drop the explicit dependence
on x for λ

(k)
i (x) andσ

(k)
i (x). In the 1960s, Lorenz [3]

used theλ(k)
i to quantify variations in the predictabil-

ity of a 28-variable atmospheric model, and the as-
sociated singular vectors are currently used in several
of the competing methods for the construction of en-
sembles employed in operational numerical weather
forecasting [11–14].

1 This terminology is justified in Section 3.2.
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There is a vast literature on the estimation of the
Lyapunov spectrum (see, for example [5,15–25]). The
so-called “Jacobian method” proposed by Eckmann
and Ruelle [5] and further developed in [19,20], re-
quires three steps: (i) selecting a model state-space, (ii)
estimating the one step tangent mapsM(x, 1t), and
(iii) computing Lyapunov exponents from the series
of tangent maps (computational issues are discussed
in Appendix A). The picture is most easily drawn for
time discrete systems where the tangent map fork

steps from an initial conditionx1 is simply the product
of the Jacobians along the trajectory, that is,

M(x1, k) = J(xk) · · · J(x2)J(x1). (6)

Step (iii) provides the point of departure for the current
paper: we will assume that a series ofNobs tangent
propagatorsM(x, 1t) is in hand.

3. Deterministic chaos and the bootstrap

In this section we employ three common chaotic
systems to demonstrate that even a perfect knowledge
of Nobs tangent maps along a trajectory does not allow
the estimation of confidence bounds for eitherΛ1 or
〈λ(Nobs)

1 〉 in the case of deterministic dynamics. The
systems are:

(i) The Henon map [26] allows a direct comparison
with previous results on the bootstrap [2,27]; the
equations are

xi+1 = 1 − ax2
i + yi, yi+1 = bxi, (7)

with the parametersa = 1.4 andb = 0.3. The
Jacobian of the Henon map2 has a particularly
simple structure which is independent ofy:( −2ax 1

b 0

)

(ii) The Ikeda map [28]:

xi+1 = 1 + µ[xi cos(t) − yi sin(t)],

yi+1 = µ[xi sin(t) + yi cos(t)], (8)

with t = 0.4 − 6/(x2 + y2 + 1) and µ = 0.9
provides a slightly more complex Jacobian.

2 Note that two misprints in [2] yield the wrong value both for
the Jacobian (Eq. (9) of [2]) and for theΛ1 (Table 1 of [2]) of
the Henon map.

Lyapunov exponents of both systems are well
documented (see [5,10,19,22,29] and references
therein) and our results below are supported by
those presented in these references.

(iii) The Sinai map [30]:

xi+1 = xi + yi + δ cos(2πyi) mod 1,

yi+1 = xi + 2yi mod 1, (9)

with δ = 0.10. In this system the Jacobian de-
pends only ony; further the distribution ofy ap-
pears to be uniform on the interval [0, 1], which
may allow the development of analytic argu-
ments to support the conclusions of this section.

In each case the Jacobian is known analytically.
Given a (numerical) trajectory, the linear propagators
overk steps can be determined; thus each propagation
time k implies a true distribution ofλ(k)

i , with one
value for each initial conditionx1 andx1 is uniformly
distributed with respect to the natural measure on the
attractor,µ(x).

3.1. Demonstrating the inappropriateness of the
bootstrap

When analysing observational data, the number of
observations,Nobs, is usually fixed; there is one real-
ization of the data, and no more. For a given statistic,
only one estimate over the complete data set exists
and there is no access to the distribution of〈◦〉Nobs.
We adopt the notation〈◦〉 to denote the mean of the
true distribution, and〈◦〉N to denote a mean estimated
from N consecutive realizations along a single trajec-
tory; thus in a deterministic system,〈◦〉N is defined
by the value ofx1. The bootstrap [31] provides a pow-
erful statistical methodology aimed at quantifying the
uncertainty resulting from a finite sample. This is ac-
complished by using resampling methods to construct
empirical distributions of the statistic (or functional) in
question [4,32–34]. Drawing randomly, with replace-
ment, from the originalNobs elements, the functional
of interest is calculated yielding a so-calledbootstrap
replicate. This procedure is then repeated, leading to
an empirically based estimate of the distribution of
the statistic via that of the bootstrap replicates. This
method is inappropriate, however, for dependent data,
for which moving blocks bootstraps have been pro-
posed (see, for example, [4]). In that case, one draws
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Fig. 1. Distributions ofλ(200)
1 for deterministically (solid) and randomly (dotted) sampled Jacobians drawn from the invariant measure (a)

of the Henon map and (b) of the Ikeda map. The distributions are different. An estimate ofΛ1 is indicated by the arrow at the top axis
in each panel.

randomly with replacement blocks of lengthl from
the original data in an attempt to take the dependence
in the data into account.

The authors of this paper (and its referees) read
Gençay [2] as promoting the moving block approach
to preserve the distribution of delay reconstruction
points, and then computing the bootstrap replicates
λ̃

(Nobs)
1 from the products of randomly ordered Jaco-

bians drawn from this distribution in the hope that “the
moments of the largest Lyapunov exponent estima-
tor obtained from the bootstrap procedure matches the
distribution of the true largest Lyapunov exponent”.
When matrix manipulation does not commute, this
procedure leads to a distribution of replicates which
differs significantly from the true distribution even in
the limit of large samples. This is illustrated in Fig. 1,
which contrasts the true distributionλ(k)

1 , and that of

the bootstrap replicates̃λ(k)
1 , for the casek = 200 for

both the Henon map and the Ikeda map. This figure
establishes the main result of this paper: the distribu-
tion of these bootstrap replicates is significantly dif-
ferent from that of the true distribution even in the
noise-free case with huge data sets. This is illustrated
in Table 1 fork = 216; clear difference remains in
both the Henon system and the Ikeda system: the mo-
ments of the distribution obtained by the bootstrap
procedure do not match those of the true finite time
Lyapunov exponent in these deterministic chaotic sys-
tems. An alternative reading of Genc¸ay [2] interprets
the algorithm as merely sub-sampling different series
of Jacobians in their observed order, it is this second

Table 1
Finite time Lyapunov exponentsλNobs

i and corresponding bootstrap
replicates for three initial conditions in each system;Nobs = 216.

λ
(Nobs)
1 λ

(Nobs)
2

∑2
i=1λ

(Nobs)
i

Henon (deterministic) 0.60389 −2.34086 −1.73697
0.60484 −2.34180 −1.73697
0.60705 −2.34401 −1.73697

Henon (bootstrap) 0.63450 −2.37146 −1.73697
0.62742 −2.36438 −1.73697
0.62682 −2.36378 −1.73697

Ikeda (deterministic) 0.73219 −1.03620 −0.30401
0.72343 −1.02744 −0.30401
0.73404 −1.03805 −0.30401

Ikeda (bootstrap) 0.49590 −0.79991 −0.30401
0.49585 −0.79985 −0.30401
0.49371 −0.79772 −0.30401

Sinai (deterministic) 1.38441 −1.55638 −0.17197
1.38423 −1.55388 −0.16964
1.38438 −1.55410 −0.16971

Sinai (bootstrap) 1.38432 −1.55491 −0.17059
1.38391 −1.55187 −0.16795
1.38434 −1.55407 −0.16973

For both the Henon and Ikeda systems, the variation within either
the true values or the replicates is small compared to the differences

between them; variations of order 1% remain inλ
(216)
1 . The Sinai

case is discussed in the text.

reading that was intended by Genc¸ay (Genc¸ay, 1998,
private communication). Under this second reading,
the algorithm does no resampling at all, and hence not
a bootstrap approach; while the issue of commutation
of matrix multiplication discussed in this section is
avoided, errors in estimatingΛi due to deterministic
dynamics discussed in Section 3.2 are not moderated
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in any way. It is the bootstrap interpretation, not the
sub-sampling interpretation, that is deployed in [27].

It is clear from Fig. 1 that the distributions ofλ
(200)
1

for the deterministically ordered and randomly sam-
pled Jacobians are different. In the Ikeda system both
distributions hardly overlap and the true Lyapunov ex-
ponentΛ1 lies beyond the 99.9 percentile of this dis-
tribution. While in the Henon map and Sinai map, a
“shuffling” of matrices does not affect the finite time
Lyapunov exponents dramatically. Fork = 200 in
Henon, the mean in the random case is only slightly
larger than in the deterministic case and the true Lya-
punov exponent lies well within both distributions;
nevertheless the distribution of the replicates differs
substantially from the true distribution. This differ-
ence increases with increasingk, as is reflected in Fig.
2 which shows the evolution of distributions of the
λ

(k)
1 (left-hand panels, deterministic cases) and theλ̃

(k)
1

(right-hand panel, bootstrap replicates) as a function
of k for all three systems. Fig. 2 illustrates that the
bootstrap methodology fails even for relatively large
Nobs, this is most obvious for the Ikeda map.

Why would the distribution of bootstrap replicates
λ̃

(k)
1 bear any resemblance to that of theλ

(k)
1 ? This will

occur whenever there tends to be a systematic align-
ment between the left singular vectors ofM(x(t), 1t)

and the right singular vectors ofM(x(t + 1t), 1t),
independent ofx and 1t. In both the Baker’s map
and the Baker’s apprentice maps [7,35], correspond-
ing right and left singular vectors are parallel; in these
very special cases, the product of Jacobians does com-
mute. There is a similar, though less dramatic, ten-
dency towards alignment in the Sinai map, illustrated
by the “similarity” of Fig. 2 (e) and (f). Clearly, such
global organisation cannot be assumed a priori in an
unknown nonlinear dynamical system, and we expect
〈λ(k)

1 〉 > 〈λ(2k)
1 〉 > Λ1 for all k. Also note that for

both the Henon and Ikeda systems, the determinant of
the Jacobian is a constant, independent ofx. Thus the
third column of Table 1 is constant (to within ques-
tions of numerical precision), independent of how the
Jacobians are sampled. As argued elsewhere [3,13,35],
the same mathematical simplicity that makes systems
like the Baker’s map and the Henon map attractive for
analytical analysis, also makes them weak straw men
for the evaluation of data analysis techniques.

The discussion above considered deterministic
maps, yet the shortcomings in the distribution of the

bootstrap replicates is expected to be more obvious
in a flow, where continuity will introduce more ob-
vious structure intoP(x(t + 1t) | x(t)). Consider a
trajectory fromx(0) for a fixed durationT . The linear
propagator over timeT is estimated from the series
of Jacobians atx(i1t), i = 0, 1, 2, . . . , k − 1, that is
every integration time step1t, whereT = k1t. For a
fixed time intervalT, λ(T)

i (x(0)) converges as1t → 0
while the bootstrap replicates generated by randomly
resampling from thesek Jacobians become less and
less relevant in the same limit.

Ideally, we are interested in the distribution of
λ

(k)
1 (x), wherex is uniformly distributed with respect

to the natural measure on the attractor. Two difficulties
arise in time series analysis: first, if the entire sample
is taken along a single trajectory then the average of
N values ofλ(k)

1 , 〈λ(k)
1 〉N , provides a biased estimate

of 〈λ(k)
1 〉. Second, if the observations are inexact then

each of the individual tangent maps may be inexact.
We deal with the second issue next, while the first
will be discussed in Section 3.2 below.

3.1.1. Observational noise
Successful application of the bootstrap depends

both on the nature of the underlying process and on
the properties of any observational noise. Genc¸ay [2]
and Bask and Genc¸ay [27] considered deterministic
chaotic processes where the data includes indepen-
dent and identically distributed (IID) observational
noise added to a system variable. The noise is solely
a measurement uncertainty, and does not effect the
dynamics in any way. Thus the addition of observa-
tional noise does not save the bootstrap. Uncertainty
in the data results in imperfect estimates of each of
the Jacobians, thus in place of Eq. (6) we have

M̃(x1, k) = J̃ (xk) · · · J̃ (x2)J̃(x1). (10)

Even though each Jacobian is inexact, eachxi is com-
pletely determined byx1, and this time ordering of the
Jacobians will distinguishλ(k)

i (x1) from the bootstrap
replicates of randomly orderedk-products of the same
Jacobians. A valid approach to confidence limits akin
to the bootstrap methodology would consist of alter-
ing the original data with small perturbations within
the observational uncertainty3 and then to re-fit the

3 Alternatively, one might either employ different model struc-
tures on the identical data set or multiple realizations as in [6].
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Fig. 2. Distribution of the finite time Lyapunov exponentsλ
(k)
1 as a function ofk for the deterministic (left) and the random (right) sampling

of Henon (a) and (b), Ikeda (c) and (d), and Sinai (e) and (f) systems. The mean (solid), median (short-dashed), and the 5% and 95%
quantiles (long-dashed) are shown. For eachk the distributions are based on sample sizes of 215 Jacobians. The arrow to the right of each
panel indicates an estimate ofΛ1 for the corresponding deterministic system.

model, compute new Jacobians, and obtain a distinct
estimate ofλ(k)

i (x1). While this would allow a distri-
bution of replicates for estimating the uncertainty in
λ

(k)
i (x1) for a particular (if unknown) value ofx1, it

sheds no light on the distribution ofλ(k)
i over the at-

tractor, nor on the relation of〈λ(k)
i 〉 to Λi.

3.2. Implications of deterministic dynamics

Given Nobs tangent maps along a trajectory, there
is only one estimate ofλ(Nobs)

1 ; similarly, there are

N = Nobs/k values from the distribution ofλ(k)
1 . This

partitioning yields a series of disjoint finite time Lya-
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punov exponents which are “independent” only in the
sense that no particular Jacobian is used twice in the
calculation. They are, in general, not independent in
a statistical sense since they lie along a deterministic
trajectory. For each and every one of theseNobs/k val-
ues, the correspondingλ(k)

1 is completely defined by

the initial state of the system,x1. Thus〈λ(k)
1 〉N is also

defined byx1. Observational noise does not destroy
this dependence.

If the goal is to estimateΛ1 from the particular
observed value of〈λ(k)

1 〉N , one must cope with three
distinct difficulties: (1) the systematic error due to a
single finite trajectory, (2) the sampling error in the
estimated mean due to finiteN, and (3) the simple fact
that for finitek, 〈λ(k)

1 〉 6= Λ1 except in special cases
(as noted above). As stressed by Ellner et al. [29],
each of these effects persist, even when the particular
λ

(k)
1 (or the Jacobians) are known exactly; Ellner et al.

refer to the difference betweenΛ1 and〈λ(k)
1 〉 as “block

error”, but we note that there is no “error” here per se,
these are simply different quantities. ObtainingNrep
samples with the aim of quantifying the variation in
〈λ(k)

1 〉N will requireNrep disjoint blocks each of length
Nk; a bias will still remain if the newNobs = NrepNk

maps lie along the same trajectory. The central point
here is that〈λ(k)

i 〉N provides a biased estimate of〈λ(k)
i 〉

when theN samples are taken along a single length
of trajectory, this significantly limits applicability of
the bootstrap.

The asymptotic convergence of〈λ(k)
1 〉 to Λ1 ask →

∞ is widely discussed (see, for example, [10,22,25,29]
and references thereof); in contrast, here we are con-
cerned with smallk. Indeed, we are interested in the
evolution of 〈λ(k)

1 〉 for precisely thosek prior to the
onset of the asymptotic scaling range documented by
those authors. It is for these small values ofk that con-
fidence bounds, if available, would be of most value.
Of course, we cannot say a priori what constitutes
small k; it will be system dependent. Althoughk =
200 (the case considered by Genc¸ay) is often consid-
ered to be “large”, Fig. 1 shows that the width of the
(true) distribution ofλ(k)

1 still exceeds 10% of its mean
value for both the Henon map and the Ikeda map. The
companion paperpaper II investigates the distribu-
tions ofλ(k)

i for smallk, the estimation of their means,

and the evolution of the mean values〈λ(k)
1 〉 and〈λ(k)

m 〉

towardsΛ1 andΛm, respectively. Note that the con-
vergence may depend not only onk, but also upon the
initial condition; for example, there exist long chaotic
transients to a periodic orbit or fixed points [36,37].

In deterministic systems there is a fundamental am-
biguity in estimating positiveΛi from a finite trajec-
tory, namely that the observations may represent only
transient behaviour, or a subset of the full dynamics.
Thus it is nontrivial to approximate the limit of infi-
nite time and assess the globalΛi, even when the dy-
namical equations are known, and a plethora of defini-
tions (and associated names) for “local” Lyapunov ex-
ponents exist [3,10,38–45]. While most of these con-
verge to the Lyapunov exponentsΛi ask → ∞, they
can differ considerably for the finite times which are
of interest here. Among these definitions, it is impor-
tant to distinguish clearly between two distinct classes
of exponent, both of which are commonly referred to
as “local Lyapunov exponents”. Both classes consider
the effective growth rate of infinitesimal uncertainties
over a fixed (finite) time interval; they differ in the ini-
tial orientation of the uncertainty. Eq. (5) definedfinite
time Lyapunov exponentswith respect to the singular
vector basis arising from the singular value decompo-
sition (SVD) ofM(x, τ) for finite τ; these exponents
were dubbed local Lyapunov exponents by Abarbanel
et al. [10] and this usage is now common. Alterna-
tively, one may sample the growth of infinitesimal per-
turbations along some other well-defined basis; for ex-
ample, the local orientations of a basis which defines
the global Lyapunov exponents. Effective growth rates
sampled in this very different basis are also referred to
as “local Lyapunov exponents” [38,46–50]. To avoid
increasing the existing confusion, we would refer to
the second asfinite sample Lyapunov exponentsand
avoid the moniker local Lyapunov exponent all to-
gether. The distributions of finite time exponents are
contrasted with those of finite sample exponents of the
same system inPaper II; the results here concern only
finite time Lyapunov exponents. We stress that neither
the finite sample nor finite time exponents imply ex-
ponential growth: any nonzero singular value defines
a corresponding “exponent” regardless of whether the
growth is linear or exponential or intermittent (or oth-
erwise). Any increase in separation will yield a pos-
itive finite time exponent: exponential growth is not
required. These facts severely limit the utility of Lya-
punov exponents in quantifying predictability [7,12],
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as does the requirement that the duration of interest
(k1t) must be specified a priori. Alternatives to Lya-
punov exponents, such as local uncertainty doubling
times and state dependent optimisation times for defin-
ing singular vectors, are discussed in [7,12,13].

4. Bootstraps in nonlinear stochastic systems

The applicability of the bootstrap to nonlinear
stochastic systems is also of interest. One class of
stochastic systems consists of some deterministic
map, F(x), with dynamic noise,εdyn; thus xi+1 =
F(xi) + εdyn. Here the noise affects the current state
(and thus the future evolution) of the system, whereas
observational noise affects the measurements but
leaves the underlying dynamics unscathed. Recently,
Bailey et al. [6] and Yao and Tong [51] have made sig-
nificant progress in understanding the Lyapunov expo-
nents of members in this class of systems whereF(x)

is chaotic. We will refer to these nonlinear stochastic
dynamical systems with positive Lyapunov exponents
as aleatoric [7]; they differ considerably from the
case of observational noise on the same deterministic
chaotic system. The difference proves crucial to the
applicability of the bootstrap. Bailey [52] has proven
a generalisation of the central limit theorem (CLT)
under fairly general assumptions for these stochastic
systems. In contrast, it can be proven that the cen-
tral limit theorem does not apply to convergence of
Lyapunov exponent estimates in some deterministic
systems (see [53]), and there is widespread numerical
evidence [10,22,29,41] of “anomalous convergence”
in deterministic systems for which analytic results are
not available. The crucial distinction lies in whether
or not “the noise” influences the dynamics: in the
aleatoric case (Bailey) it does, justifying a Markov
chain approach which leads to the CLT. In the chaotic
case it does not; Taken’s theorem applies to the un-
derlying trajectory which remains deterministic even
if the observations are inexact, leading to Eq. (10).

Interpreting the algorithm of Genc¸ay [2] as a boot-
strap also produces inappropriate replicates for the
aleatoric systems; herex1 no longer uniquely defines
xk, although the conditional probability distributions
P(xi+1 | xi) may vary greatly from the invariant mea-
sure,µ(x). The crucial point is that even though the
trajectory becomes only short-term dependent, ma-

trix multiplication remains noncommutative. Strictly
speaking, the bootstrap interpretation of Genc¸ay’s al-
gorithm only applies whenP(xi+1 | xi) reflectsµ(x);
that is, when the linear propagator is formed from a
series of IID Jacobians.

Unlike the case of deterministic chaos, however,
there is an alternate bootstrap approach for aleatoric
systems above. Dynamically conditioned moving
blocks of the Jacobians themselves can provide useful
bootstrap replicates (hereafter called block-J repli-
cates) as long as careful match criteria are followed.
In particular, one must ensure that ifJ(xi) multiplies
J(xj) from the left, thenδ ≡ xi − F(xj) is of the
order of the dynamical noise,εdyn; that is one must
considerP(F(xj) + εdyn = xi | xj) when selecting an
xi. In the limit | εdyn |→ 0, this probability distribu-
tion approaches a delta function on| xi − F(xj) | and
we recover4 the deterministic case. In fact, demon-
strating the (in)effectiveness of these dynamically
conditioned bootstrap replicates may provide a test
for distinguishing deterministic chaos from aleatoric
dynamics.

5. Discussion and conclusion

The traditional bootstrap cannot be applied when
estimating multiplicative ergodic statistics; a specific
proposal for bootstrap confidence bounds [2] is unten-
able, mainly due to the fact that matrix multiplication
does not commute. Previously reported results for the
Henon map were serendipitous; dramatically different
behaviour arises in other simple two-dimensional de-
terministic maps, such as the Ikeda map, and even in
the Henon system for longer time series. In this respect
the bootstrap is inappropriate for deterministic chaos.
Nor can the algorithm be applied to aleatoric systems
of the kind discussed by Bailey [52]. A dynamically
conditioned moving block bootstrap approach might
show promise in this case; adjacent blocks could be
chosen probabilistically if conditioned on the current
value ofx(t), but not with uniform probability with re-
spect to all observedx. The bootstrap interpretation of
the algorithm proposed in [2] is valid only for estimat-
ing the distribution of Lyapunov exponents of prod-

4 As noted by a referee, we are considering the dynamics in
the true state space of the system; generalizations to model-state
spaces may prove nontrivial.
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ucts of randomly ordered (IID) matrices [1]. It fails
both in the case of deterministic chaos and in aleatoric
stochastic dynamics.

For a particular system, we wish to know if our ob-
servations (or integrations) might be sufficient to al-
low, to a good approximation,Λ1 ≈ 〈λ(k)

1 〉, and before
concluding, we suggest an alternative avenue towards
identifying nonconvergence. Our goal is a necessary
but not sufficient condition which, if satisfied, would
merely indicate that our observations might be suffi-
cient to allow, to a good approximation,Λ1 ≈ 〈λ(k)

1 〉
for experimentally accessiblek. For sufficiently large
k, we expect the power law convergence [10,22,29,41],
yet as stressed by Ellner et al. [29], knowledge of the
asymptotics is of limited utility in any particular case
when only finitek is accessible. How small isk? As
made clear by an anonymous referee, it is commonly
held thatk = 200 is a case of “largek” and thus the
width of the distribution ofλ(200)

1 is often thought to
be negligible. Figs. 1 and 2 show this is not the case
for either the Henon map or the Ikeda map.

We do not know a priori how large a value ofk is
required; we can however invert the process and com-

pare the distributions ofλ(k)
1 and λ

(k′)
1 , with k′ > k,

in order to determine whetherk might cover a long
enough duration so that theλ(k)

1 approachesΛ1. One
straightforward approach is to construct a surrogate

distribution forλ(k′)
1 based on the observed distribution

of λ
(k)
1 under the null hypothesis that consecutiveλ(k)

were effectively independent. If contrasting the rele-
vant moments of the surrogate distribution with those
of the sample from the true distribution allows us to re-
ject the null hypothesis, then we have an evidence that
k is not large enough. Note that in forming the surro-
gate distribution, one must manipulate theλ(k) them-
selves; takingk′ = 2k for simplicity, the normalised
singular values ofM(xi, k1t)M(xj, k1t) with ran-

domly chosenxi andxj need reflect neitherλ(2k)
1 nor

Λ1. Even for largek, matrix multiplication does not
commute.

The question of distinguishing “largek” from
“small k” for both maps and flows is addressed in
Paper II, where the algorithm suggested above is
deployed. We stress that our test is only a necessary
condition that for a given finitek, 〈λ(k)

1 〉 ≈ Λ1 (and

〈λ(k)
m 〉 ≈ Λm), and hence a lower bound on what

might constitute “large”k. The search for a sufficient

condition continues; it will not succeed for the general
deterministic case.
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H. Künsch, T. Schreiber, and J. Theiler. We are partic-
ularly indebted to an anonymous referee for numerous
constructive criticisms of an earlier draft, and to M.
Bask and R. Genc¸ay for a very informative exchange
of views. CZ acknowledges financial support from the
Free University of Berlin. LAS is supported through
a Senior Research Fellowship at Pembroke College,
Oxford and a Guest Professorship at the University of
Potsdam made possible by the INK “Kognitive Kom-
plexität” (DFG).

Appendix A

A major computational obstacle to estimating ex-
ponents lies in obtaining numerically stable estimates
of the singular values of the large matrix product of
Eq. (6), inasmuch as the propagatorM(x, k) may be-
come numerically singular for relatively smallk, if the
product in (6) is estimated naively by matrix multipli-
cation. The original method to avoid this singularity
[5,20] transforms the product of Jacobians in (6) into
a product of upper triangular matrices via a QR de-
composition. Unfortunately, this approach cannot be
applied in the case of the finite time Lyapunov expo-
nents; we employ the iterative method of Abarbanel
et al. [10], except for “small” values ofk. Abarbanel
et al. [10] obtained the singular values ofM via re-
cursive QR decomposition. Initially, takeQ0 = I and
defineA(1) via

MTM = JT
1 · · · JT

k Jk · · · J1 ≡ A(1), (A.1)

which, by QR decomposition yields

A(1) = Q
(1)
2k R

(1)
2k R

(1)
2k−1 · · · R(1)

1 . (A.2)

The superscript in brackets denotes the number of the
iteration steps. Next, we define a matrixA(2) which
has the sameR factors but theQ(1)

2k on the right side:

A(2) = R
(1)
2k R

(1)
2k−1 · · · R(1)

1 Q
(1)
2k , (A.3)
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and perform QR again:

A(2) = Q
(2)
2k R

(2)
2k R

(2)
2k−1 . . . R

(2)
1 . (A.4)

SinceA(2) = Q
(1)T
2k A(1)Q

(1)
2k , A(1) andA(2) are simi-

lar and have the same eigenvalues. One continues to
createA(3), A(4), . . . , A(n) and, asn increases,Q(n)

2k

converges to the identity matrix [54].A(n) is then up-
per triangular.

In practice, the iteration was continued until each
matrix element ofQ(n)

2k differed by less than 10−6

from identity. For smallk this may require rather large
number of iterations, while for largek typically 2 or
3 iterations are sufficient. This suggests that for small
k one might consider the SVD of the direct matrix
product, either for the singular vector themselves or
for an improved starting estimate ofQ0.
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