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Abstract-The reductionist approach has proven a
powerful guide for scientific advancement over the last
300 years; constructing the simplest models consistent
with the data remains a goal across the sciences. Yet
are there instances where the blind pursuit of “simple”
models is doomed from the start? Can we construct
tests of internal consistency relating to the minimal
duration of data from a given phenomenon, or between
the data and a given model? In short, if the aim is to
model a phenomena, should we just do it or first pon-
der the possible outcomes? This question is addressed
in the context of the datacomp.dat data set.

I. Introduction

Nowadays 1t is common to attempt to reconstruct dy-
namics from data [12]. This can be approached in a
variety of ways, depending upon what is known about
the underlying system. One may build a model of the
system from so-called first principles; or attempt to
reconstruct a state-space model either explicitly (see
[9] and references therein), or less explicitly via neural
networks (see [12] and references therein); or adopt
traditional statistical modelling approaches.

In the case of datacomp.dat, we know little of the
system, having only 2000 observations, each of about
30 bits with no knowledge of the observational noise
level. We are asked to extend the series by an addi-
tional 200 points, with the goal of minimizing the root
mean square (RMS) error on the extension. We will
consider the questions: What kinds of models should
we consider? How should we choose a particular model
structure? How might we decide if this model is con-
sistent with our knowledge of the system? What kind
of predictions should we make?

II. The Data

The time series datacomp.dat is shown in Figure la
(here and below, time is measured in terms of the
sampling interval). One is immediately struck by the
range of scales over which the system shows changes
in behaviour. The sampling rate is high enough so
that the fast oscillations are well resolved, there be-

ing about 100 of them in the series; but the data also
shows structured changes in behaviour on a time scale
of about 200. This long term structure makes it doubt-
ful that the available data is of sufficient duration to
provide a good description of the range of behaviour
typical of the underlying system. The lack of any sig-
nificant quantization effects in the data indicate either
that it has not been passed through any laboratory
A/D converter or that significant filtering has taken
place. In this sense, the data avoids some of the dif-
ficulties found in the Santa Fe test data (see [12], pp.
323-344). Yet it remains to be seen if the data set
is long enough to yield a well-defined model within a
particular model structure. We proceed by construct-
ing a variety of model structures for this data set, and
examining their data requirements.

III. Reconstruction and Prediction

In this section we consider four different approaches
to modelling the observations. Our goal is to restrict
the model class(es) considered in making predictions.
First we illustrate that a class of stochastic processes
is unlikely to provide a good model for this system.
We then consider something of a “first principles” ap-
proach and construct a system of ordinary differen-
tial equations which mimic the general behaviours of
the data. Third, simple analogue predictions are con-
sidered where the reconstruction is based on a time
delay embedding. Finally, we deploy a different ana-
logue technique, utilising the highly sampled data to
determine local derivatives and thereby extract the dy-
namics.

A. Ruling out the easy options

Given the tremendous depth of research into proper-
ties of linear stochastic processes over the last 304
years, we first wish to consider whether or not the
data set might be easily modelled by such a process.
Given the smoothness of the data, the abrupt changes
in behaviour (on the 200 time scale), and the apparent
lack of time-reversibility, we doubt that any simple lin-
ear stochastic process will provide a good model. One



method to qualify this hunch is to generate “FFT sur-
rogate” data sets with the same power spectra (and
autocorrelation function) of the observations, but with
random phases (see [8, 9, 11], and references thereof
for details and improvements). Such surrogates are
typical realizations of a linear stochastic process with
the same autocorrelation function as the observations;
one is shown in Figure 1b. The differences are ap-
parent to the eye, although one could, of course, still
quantify this by computing one of any number of test
statistics which would reject the null hypothesis that
the unknown system was a linear stochastic process at
rather high levels of significance.
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Figure 1: (a) The competition data datacomp.dat and
(b) a linear FFT surrogate (b).

B. The Chair model

Both the fast oscillations and the longer structured
behaviour of the observations may be modelled in a
three-dimensional flow. The state space of one such
model (Equations 1 and 2 below) is illustrated in
Figure 2. This model is simply a collection of re-
pelling harmonic oscillators centred at x; = (24, ¥, 2:),
t=1,2,...,n, each centre i1s placed on the zy-plane
(i.e. z; = 0,2 =1,2,...,n). These oscillators domin-
ate the dynamics when z is small, and are combined
with a limit cycle centred at xg = (2o, Yo, 20) which
is attracting when z is large. A typical trajectory
near a x; spirals outwards and upward (z increasing)
about a line perpendicular to the zy-plane at x;. As
the z co-ordinate increases there is a transition to the
limit cycle mode, mimicking a structural change in
datacomp.dat. Now in a large z mode, the traject-
ory 1s attracted toward the limit cycle, the radius of
which 1s such that it nearly passes above the centres
x;. Aperiodically, the trajectory strays above one of
the centres, z then decreases exponentially as the tra-
Jectory falls down toward the particular centre x;; the
small z motion is then dominated by the repeller at

x;. And so on. The equations of motion are

n

T = v(z)Zs(ri)[ai(Z—mi) —wi(y — y)]
i=1
+(1 = v(2)) [ao(z, y) (& — 2a) — woly — yo)],
Y= v(2) Z s(r;) e (2 — @) + wi(y — wi)]
+(1 - ”( ) [vo(z, y)(y = yo) +wo(x — zo)],
2= ZZ aexp(0.5/(rf 4+ 0.1) — r?) + 5r;]
—5;2, (1)
where
ag(z,y) = 1—(1/ro)Va®+y?,
v(z) = (1/2)(1 —tanh((z — 20)/0.5)),
s(ry) = (1/2)(1 - tanh((ri —0.5)/0.1)).
L — \/ l’ - 171, y - yl) )
(2)
and we take wo = 20, o = V2, n = 4,
(2o, Y0,20) = (0,0,5); w; =40, a; = L for i = 1,..,4.

The centres (z;,y;, z;) are (1,1,0), (1,-1,0), (-1,1,0), (-
1,-1,0). The coefficient a in the Z equation determ-
ines whether or not the motion is periodic; @ governs
the damping of the downward force acting on the tra-
jectory as it passes over the centres. For low values
1 < a < 2.5, the motion is periodic. For a = 2.9,
however, we observe aperiodic motion over time scales
long relative to the length of datacomp.dat. By choos-
ing an appropriate measurement function h(z,y), a
signal structurally similar to datacomp.dat may be
obtained. Taking h(z,y) = 0.3z + 0.1y, yields the
trace shown in Figure 3a.

We could, of course, significantly increase the
superficial resemblance between Figure 3a and
datacomp.dat by altering both the parameters of the
model and h(z,y). We have not done so for a variety
of reasons; one of the more compelling is the length
of datacomp.dat. Suppose for a moment that a chair
model generated datacomp.dat, what duration of ob-
servations would be required to identify the particular
values of the parameters, under the assumption that
the general structure of the chair model was correct?
The accuracy with which we must “identify the para-
meters” is clearly task dependent, in this case the in-
structions say our aim is to forecast 200 steps into
the future. Preliminary tests show that the amount of
data required is somewhat significantly greater than
2000 steps.



Figure 2: State space of the chair flow.
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Figure 3: Three realistic models. (a) the signal ob-
served from the chair flow using the measurement func-
tion h(z,y) = 0.3z + 0.1y, (b) the analogue delay

model, and (c) the analogue derivative model.

C. Delay reconstructions

Analogue prediction was suggested as an antidote for
no model (or no good model) by Lorenz [3]; this ap-
proach was successfully exploited in the Santa Fe time
series prediction competition by Kostelich and Lath-
rop ([12] pp. 283-295). An analogue prediction is made
by taking a reconstructed vector and searching for near
neighbours in a library of such vectors. The image of
this nearest neighbour is the prediction. In geomet-
rical terms this corresponds to searching for the most
similar pattern in the library of patterns and then fore-
casting the continuation of the most similar pattern.
Analogue forecasting provides a way to intelligently
shuffle the original time series while conserving struc-

ture over some (random) time span of order 7,. The
technique involves making a time delay embedding [5]
of the signal s; = (si_(m-1),-.,5i). The delay vec-
tor s; represents the pattern of length m in the data
between times#;_(,_1) and ¢;. In the delay space, near
neighbours from the original signal provide analogues,
ideally from the same region of the true state space.
By patching together segments of data, each of length
& T, > m, we aim to capture the coherent long time
structure of datacomp.dat. Beginning a new segment
is only contemplated when there are “nearby” ana-
logues, and once a new section of signal is selected, a
minimal length on the order of 7, is considered before
another switch is contemplated. And so on. One such
trajectory is illustrated in Figure 3b. In this example,
m = 10 and the minimal period before searching for
a new near neighbour considered 7. = 100 with vari-
ations chosen uniformly on the interval [0, 200].

This method is particularly amenable to ensemble
forecasting, discussed in Section IV. In this case mul-
tiple analogues are chosen, with different weights, as

in Random Analogue Prediction (RAP, [6]).

D. Derivative reconstructions

The last model we consider is another analogue model,
this time in a reconstructed state space based both
The high signal to
noise ratio of datacomp.dat allows us to exploit nu-

on the data and its derivatives.

merically estimated derivatives; these are computed
via local polynomial fits to the time series itself (see
[7]). This reconstruction sometimes holds an advant-
age over delay reconstructions by more effectively us-
ing information in high time resolution data (see [2])
while also avoiding the choice of a particular delay.
In this reconstruction, the derivative vectors, d; =
(si, $i,8i), can be used to make predictions, either by
interpolative methods [5, 9, 12], or analogue methods.
We will consider only the latter. Figure 4 contains a
projection plot of s versus § for datacomp.dat. The
dotted trajectory represents the first 1800 points of
datacomp.dat, the dashed line represents the final 200
points and the circle marks the final point. The obvi-
ous coherent structure in this figure strongly suggests
a deterministic approach to modelling datacomp.dat
(at least between most time steps), yet the helter-
skelter crossing of trajectories (some of which track
each other for an extended time and thus would also
yield near neighbours in a delay reconstruction) in-
dicates a need either to consider significantly higher
dimensional reconstructions or to invoke occasional
stochastic perturbations. The duration of the data set
restricts us to fairly low dimensional reconstructions,
while the limited number of structural changes makes
guessing a good stochastic formula for them unlikely,
without additional information on the underlying sys-
tem which generated the data.
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Figure 4: The reconstructed derivative state space,
showing the evolution of (s(t), $(t)) with time. The
dotted trajectory represents the first 1800 points, the
dashed line represents the final 200 points and the
circle marks the final point. The continuation is the
solid line.

Figure 5 is a zoom is about the final point (circle).
Shown in 2-d projection, the solid line in Figure 5
represents a continuation of the series using a three-
dimensional derivative reconstruction, i.e. (s;, $;, §;);
the corresponding time series is shown in Figure 6b.
A typical model trajectory is given in Figure 3c.

Figure 5 brings into sharp focus the likely futility
of deploying advanced interpolation methods on this
data set. The dashed trajectory leading up to the final
point has only one nearby trajectory. While most of
the model state space is moderately well sampled, the
particular region around the end point is sparse; the
probability of accurately determining the future path
over the next 200 time steps appears small.

IV. Forecast and Verification

Even if datacomp.dat originated in one of the relat-
ively simple model structures considered above, data
sets of duration 2000 fail to restrict the range of beha-
viours to the level such that good RMS forecasts over
a period of 200 are likely: without additional inform-
ation, how would one choose between the forecast of a
suitably tuned chair-model and one of the data-driven
models? And given that the forecasts of models which
maintain realistic levels of uncertainty diverge rapidly
(that is, over time scales much less than 200), the “op-
timal forecast” in the RMS error sense is unlikely to
be a realistic trajectory of any of them [1, 10].

One option is to provide an ensemble forecast, where
the ensemble is over both different models and also un-
certainty in the initial condition, but this fails even to
aim at the target of the competition. The mean of
such an ensemble would provide a candidate, as would
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Figure 5: The zoomed in reconstructed derivative state
space, showing the evolution of (s(¢), $(¢)) with time.
The dotted trajectory represents the first 1800 points,
the dashed line represents the final 200 points and the
ctrcle marks the final point. The crosses mark the
actual points. The continuation is the sol:d line.

picking one model, based on intuition or luck and ex-
tending it 200 steps. Figure 6 shows extensions for
three models. If the goal is truly a minimal RMS er-
ror trajectory over 200 steps, we would suggest a rapid
decay to an estimated mean value of p = 0.0146. This
suggestion is strengthened by the distinguishing beha-
viour near the end of datacomp.dat noted above.

Both delay and derivative reconstruction models of-
fer reasonable trajectories; given the amount of data
available, there i1s no reason to favour any one of these
over the other. The winning predictor may win not
because it has captured the most physics - but simply
because it was fortunate enough to do the right thing.
Figure 6¢ shows a combination of the derivative ana-
logue prediction in Figure 6b but weighted so as to
revert to the mean p of the entire data set on a time-
scale t,. For a forecast initiated at ¢ = g,

Frms (t) = a(t)Fderiv(d(tO)at) + (1 - a(t)):u (3)
where the weighting function «(t) is
a(t) = exp(=(t —to)/ta) (4)

and t, = 30.

Can’t someone do better than this? Yes. And
no. It is doubtful that any purely data based ap-
proach to modelling datacomp.dat could yield a fore-
cast model accurate in the RMS sense at 200 steps:
given a variety of different model structures, any of
which could be tuned to the existing data, how might
one choose without recourse to serendipity? Without
such serendipity, it seems clear that the best forecast
model (in the RMS sense), is unlikely to prove the



best model of the system in the reductionist sense.
Each model structure will admit an “optimal model”
with parameter values which provide the best fit for
the combination of model structure, system, and cost
function. In practice, every “optimal model” will fail
to reproduce the exact state space dynamics of the
system due to structural error. But why not at least
use a model structure whose “optimal model” has a
deep minima in the cost function of interest? (While
admitting that the choice of model structure is based
more on the background of the researcher than on the
data.) One reason is simply that the available data
is insufficient for one to expect the particular model
obtained to be anywhere near that true minima.

Until a trajectory has explored the true state space,
we can hardly expect to “reconstruct” a relevant
model-state space: the data does not contain enough
information to define what happens in soon to be vis-
ited regions of (either) state space. Out-of-sample,
there is little to be gained from using an advanced in-
terpolation model if the dynamics of the model when
fit to these 2000 points would differ substantially from
those of a model based on the next 2000 points. If the
underlying system is a linear stochastic process, then
there are many methods for estimating the appropri-
ate complexity of the model; much less is known if the
underlying system is a nonlinear deterministic process.
And given only the data, we never know the process.

Given uncertainty in the initial condition or model
structure, the model which minimizes the RMS fore-
cast error at large lead times will not reflect the non-
linear dynamics of the system, thus it will fail to
achieve the reductionist’s goal. By looking for in-
ternal consistency between model and each individual
forecast, given the observational uncertainty (see [4]),
and attempting to construct models which shadow the
data while not producing minimal RMS skill scores
(see [1, 10]), we can attempt to construct boxes, be
they black, grey, or transparent, which reproduce the
observed dynamics to within the limits set by the
frequency, duration, and accuracy of the available
data. Without additional information about the sys-
tem which produced the data, we prefer not to aim for
more.
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