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Disentangling Uncertainty
and Error:
On the Predictability of

Nonlinear Systems

Leonard A. Smith

ABSTRACT

Chaos places no a priori restrictions on predictability: any uncertainty in
the initial condition can be evolved and then quantified as a function of fore-
cast time. If a specified accuracy at a given future time is desired, a perfect
model can specify the initial accuracy required to obtain it, and account-
able ensemble forecasts can be obtained for each unknown initial condition.
Statistics which reflect the global properties of infinitesimals, such as Lya-
punov exponents which define “chaos”, limit predictability only in the sim-
plest mathematical examples. Model error, on the other hand, makes fore-
casting a dubious endeavor. Forecasting with uncertain initial conditions
in the perfect model scenario is contrasted with the case where a perfect
model is unavailable, perhaps nonexistent. Applications to both low (2 to
400) dimensional models and high (107 ) dimensional models are discussed.
For real physical systems no perfect model ezists; the limitations of near-
perfect models are considered, as is the relevance of the recurrence time of
the system in terms of the likely duration of observations. It is argued that
in the absence of a perfect model, a perfect ensemble does not ezist and
hence no accountable forecast scheme exists: accurate probabilistic forecasts
cannot be made even when the statistics of the observational uncertainty
are known ezactly. Nevertheless, ensemble forecasts are required when ini-
tial conditions are uncertain; returning to single best guess forecasts is not
an option. Both the relevance of these observations to operational forecasts
and alternatives to aiming for exact probabilistic forecasts are discussed.

2.1 Introduction

All my means are sane, my motive and my object mad.
Captain Ahab [42]

This paper discusses the limits that uncertainty in the initial condition
and error in the model place both on individual forecasts and on pre-
dictability in general. The systems of interest will be nonlinear, potentially
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chaotic. The methods of analysis and means of computation are sane, and
may be assumed exact without altering the limits discussed below. The
issue is rather whether or not our questions are well-posed: is the object of
our search unobtainable even in the best of circumstances?

It has long been known (see, for example, Brillouin [12]) that even in a
well-understood and accurately examined physical system, the combination
of observational uncertainty and model error places severe limits on what
we can say about the future of the system. While the remarks below hold for
systems as simple as an analog circuit, they will be interpreted in the jargon
of weather forecasting, even though the Earth’s atmosphere/ocean system
is not particularly well observed, nor are current models near-perfect. Nev-
ertheless, numerical weather prediction (NWP) is an appropriate choice
since, due to its economic importance, operational forecasts must be made
every day and a great deal of thought has gone into attempting to improve
the forecasts using any means available. Unlike the armchair forecasts of
nonlinear dynamics or theoretical economics, operational weather forecast-
ers must face their failures. Daily. This led Thompson [63] to contrast the
relative contributions of uncertainty in the initial condition and model error
in the 1950s. In 1965, variations in the reliability of individual forecasts led
Lorenz [38] to suggest one (now operational) approach to quantifying the
likely impact of uncertainty in initial condition on each particular forecast.
Shortly thereafter, Epstein [16] and Leith [32] investigated both computa-
tional and analytic limits to maintaining initial uncertainty throughout a
forecast. Many issues of current interest to nonlinear dynamicists are old
chestnuts of the weather forecasting community.

For many years now, operational centers have made ensemble forecasts: a
collection of initial conditions, each consistent with the observational uncer-
tainty, are integrated forward in time. The role of uncertainty is introduced
in Section 2.2. In Section 2.3, ensemble forecasting is explored within the
perfect model scenario, and some jargon normalization is provided. The
ensemble approach to forecasting deterministic systems replaces the single
“best guess” initial condition of the traditional approach with a relatively
small ensemble of different initial conditions, each member of the ensem-
ble being consistent with the observational uncertainty in the initial state
of the system. The idea here is that any initial uncertainty in the initial
condition is reflected in the evolution of the ensemble, which in turn re-
flects the importance of that uncertainty in today’s forecast. By observing
how quickly the ensemble spreads out (or shrinks), one obtains a local es-
timate of the stability of forecasts made in this region of the system’s state
space; global measures like Lyapunov exponents are useless here [59, 57)
except in the most simple, uniform systems. Even localized Lyapunov ex-
ponents [38, 3, 67] are misleading [70, 60], since they are based on the
linearized dynamics over a pre-defined period of time, while the ensemble
members may well sample the relevant nonlinearities and indicate when it
is that they appear. Indeed, chaos places no a priori limits on predictabil-
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ity: given a perfect model, ensembles can accurately reflect the likelihood of
observing various future conditions (i.e., provide an series of accountable
probability forecasts). Such ensembles will slowly evolve towards the in-
variant measure of the system; but the time scale on which this happens is
independent of the measures used to define chaos which are, in turn, based
upon the statistics of infinitesimals. Since there is always uncertainty in
the initial condition, all nonlinear forecasts should be ensemble forecasts,
and the issues discussed below should find application to low dimensional
chaotic systems as well as high dimensional weather forecasts.

The stated aim of ensemble forecasts ranges from estimating the ideal
forecast probability density function (PDF) to simply obtaining a rough
guide to the reliability of today’s “best guess” or the control forecast. While
the second aim remains in sight, the first cannot be fully realized. A major
conclusion of this paper is that just as uncertainty in the initial condition
severely limits the utility of a single forecast even in a perfect model, so
model error severely limits attempts to obtain “the” forecast PDF. This
clarifies the limited applicability of results drawn from within the perfect
model scenario. All models are wrong. Yet some are more useful than others.
If imperfect models are judged by a standard which they cannot achieve,
then the more useful models may be discarded. A similar situation holds
when judging between single forecast models by using forecast error: even
a perfect model of a chaotic system will have a larger forecast error than
a model which predicts the observed mean, at least in the far future. Pre-
dicting the mean may be desirable, if one really wants to minimize single
forecast error, but this approach is obviously a poor guide to improving the
physics of the model.

A basic difficulty in evaluating ensemble forecasts comes from the fact
that the ensemble forecast estimates a probability density function in state
space, while the verification (the true state of the system at the forecast
time) is a point in state space!. It is not possible to verify a single probabil-
ity forecast, and each forecast involves a different initial condition. Further,
no two initial conditions will ever be close in a dynamical system where the
time required for the system to return to a point near the current state (i.e.,
the recurrence time) is longer than the likely duration of observations; thus
the details of each PDF will differ for each forecast. The evaluation of a
series of probability forecasts, given that each forecast PDF is different
and that only a single realization of each forecast exists, is discussed in
Section 2.4, where the one-dimensional method due to Talagrand is gener-
alized to higher dimensional spaces. But once it is accepted that an accurate
forecast PDF cannot be obtained even in near perfect models, then new

1Worse still, there are at least three relevant spaces here: forecasts lie in the model-
state space, the system lies in the “true” state space, and observations explore yet
another.
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methods both of inter-model comparison and of multi-model forecasts are
called for; this may prove especially important in guiding model develop-
ment. After a realistic look at the ambiguities introduced by model error in
Section 2.5, two alternatives to computing a forecast PDF are introduced:
(i) aiming for a bounding box, and (ii) aiming for a ¢-shadowing orbit.
Each of these can be used to determine admissible predictability times.
Fully embracing the limitations discussed below suggests a new method for
combining (rather than selecting the best of) imperfect models: the cross
pollination in time (CPT) ensemble strategies introduced in Section 2.6 can
outperform all of the models available in terms of the two aims stated above.
Standard multiple model inter-comparisons search for the best model in the
same way that standard data assimilation routines search for the true state
of the system; if no unique state can be identified empirically even under
ideal conditions, then there is no “true” state, and each of these standard
approaches may hinder the resulting forecast. This holds regardless of how
sane and sophisticated the techniques employed in the endeavor may be.

2.2 Uncertainty

Consider an intelligence which knew all the laws of nature precisely, and
had accurately (but not exactly) observed an isolated chaotic system for
an arbitrarily long time. Such an agent - even if sufficiently vast to subject
all this data to computationally exact analysis - could not determine the
current state of the system, and thus the present, as well as the future,
would remain uncertain in her eyes. While our agent could not predict the
future precisely, the future would hold no surprises for her: the predictabil-
ity of the current “state” she could see [28, 56]. By forming an ensemble
forecast from the plausible initial conditions consistent with both the sys-
tem and the observations, she could estimate the probability density func-
tion (PDF) of future states to any desired accuracy. And these ensemble
forecasts would be accountable: as the number of members in the ensemble
grew, the accuracy of the PDF would improve proportionately. Further, for
each particular initial state, she could specify the accuracy of observation
required to allow a desired level of accuracy in the final state [53, 56, 57].
She has not only a perfect model, but also a perfect ensemble: a set of
initial conditions both consistent with all observations and “on the attrac-
tor.” The true trajectory can be viewed as just another member of the
distribution which she samples to form the ensemble.

Operational forecasters at major weather centers in both Europe and
North America, attempt an impersonation of this intelligence daily when
they perform ensemble forecasts (see Palmer et al. [50], Toth and Kalnay [65],
and references thereof). The predictability of the atmosphere varies from
day to day, and so a single “best guess” forecast is incomplete without a
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daily estimate of its likely accuracy. Ensemble forecasts aim to foresee vari-
ations in predictability by quantifying the time required for a given day’s
ensemble members to splay out along significantly different trajectories,
thereby quantifying the point at which that day’s “best guess” forecast is
unlikely to be accurate. Ideally, one could also use the ensemble to quantify
the probability of various events. But no physical model is perfect, and as
we shall see, model error may make accountable probability forecasts un-
reachable, just as observational uncertainty makes a single forecast of little
value. Our agent achieves an accountable forecast by evolving a perfect en-
semble under a perfect model; once imperfect models are in use, no perfect
ensemble exists. Accepting this fact forces us to change the interpretation
and goals of forecasts. In fact, it calls into question what is meant by the
state of a physical system.

Traditionally, the current state of a deterministic system is regarded as
a point in state space, the exact location of which is obscured by observa-
tional uncertainty. This scenario only arises in computer experiments where
we determine a trajectory and then pretend to forget where it was after
adding some simulated observational noise. Even in that case, given only
the noisy observations it would not be possible to identify a true state if we
did not already know the answer: there would be a range of initial condi-
tions, parameter values, and even distinct model structures which provided
equally valid descriptions of the data. Clearly the traditional notion of “the
state” of the system must be empirically suspect if even our idealized agent
could not identify this “state” given a perfect model. In reality, of course,
all models are wrong. It is our models which have states; there is no need
for the hypothesis that physical systems do.

2.3 The Perfect Model Scenario

What is the perfect model scenario? Let the role of the physical system
be played by a set of equations proposed by Lorenz [37] as a parody of
some atmospheric variable. As shown schematically in Figure 1, the system
consists of m slow large-scale variables (the #;) and m x n fast small-scale
variables (the y; ;) and thus has a state space dimension of m(n + 1). The
notation Z is used to distinguish variables in the system state space from
those in the model-state space, which will be denoted as x. Details can be
found in Lorenz[37], Hansen [24], Orrell [48], Hansen and Smith [25] and
the references therein. The equations are:

di; . . . hizc o .
d_tz = —X;—2%;i—1 +Ti—1Tj41 — T; + r-= Zy]’,,’ (2.1)



36 Leonard A. Smith

—d~' ' i ~ ~ N hsc .
?CJl;,z = cbfjr1i (Gj-1,i — Pjr2,i) — Clji + %mz (2.2)

where i =1,... ,mand j = 1,...,n and with cyclic boundary conditions
on both the #; and the §; ; (that is Z,,41 = Z1, J(nt1,i) = J(1,;) and so on).
In the computations below F' = 10, m = 8 and n = 4. The constants b and
¢ are both equal to 10, so the small-scale dynamics are 10 time faster (and
a factor of 10 smaller) than the large-scale dynamics, while the coupling
coefficients hz and § are both set to unity.

FIGURE 2.1. Schematic of the Lorenz two-scale system.

Now some jargon.

When the forecast model is used to generate the observations which are
in turn to be forecast, one is in the perfect model scenario. The actual
state of the system will be called truth, while our best estimate of that
state, given only limited, noisy observations, is commonly referred to as
the analysis. To test our model, the forecast is contrasted with the wveri-
fication, which is in practice a future analysis; in (and only in) a perfect
model experiment can the verification really be truth itself. For a single
set of simultaneous observations, the uncertainty in the analysis is related
to the observational uncertainty. Given a time series of observations, the
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analysis corresponds to our best guess at the state, since this uses all the
available observations (and a model), the analysis uncertainty in this case
may be much lower than the observational uncertainty in the individual
measurements. In the perfect model scenario, the analysis uncertainty is
less than the observational uncertainty.

Operationally, an analysis may be generated via a 4-dimensional varia-
tional assimilation (4DVAR) technique [62, 52]. 4DVAR attempts to locate
the free running model trajectory which minimizes the difference between
the model trajectory and the observations over a given duration (called
the assimilation window), while allowing the observations to be spread out
in both space (3-D fields) and time (+1-D). Achieving this in real-time
with disparate data sources, each of which has different observational un-
certainties and which intermittently vanishes, is nontrivial. The search for
a solution is also hampered by local minima in a 107 dimensional space,
but the key point here is that the resulting analysis can be much more
accurate than the measurement uncertainty in a single set of simultaneous
observations as long as the model is sufficiently accurate. We shall quantify
“sufficiently accurate” below, here we note that this approach searches for
“the” true state; this is somewhat troubling if we have accepted that there
is no unique solution even within the perfect model scenario. An alternative
approach to generating a best guess analysis and then creating ensemble
members by adding perturbations is to generate an ensemble directly. This
approach has been illustrated in simple low dimensional models [28] while
an operational method based on multiple analyses has been investigated by
Houtekamer et al. [26]. Issues surrounding what makes the best analysis or
the best operational ensemble are widely debated within the atmospheric
community; many other options exist [7, 9, 22, 23, 43].

Traditionally, a weather forecast consisted of a single trajectory, started
at the analysis and run at the highest available resolution. Such a tradi-
tional “best guess” is often run alongside an ensemble forecast, but since
it is run at higher resolution, it lies in a different model-state space from
that of the ensemble members. The control forecast is the ensemble mem-
ber starting at the current analysis. Typically, roughly equal computational
resources are invested in constructing the analysis and running the ensem-
ble, with the high resolution run taking up most of the remainder (~ 10%).
Open questions include the issue of whether additional computational re-
source should go towards increasing the model resolution at which the
ensemble members are run (i.e., obtaining a better PDF), or running more
ensemble members at the current resolution (i.e., a better approximation of
an inferior PDF), or running the current system further into the future. Al-
ternatively, resources could be directed towards obtaining a better analysis.
This could be approached either through a more computationally intensive
assimilations technique, or through obtaining additional observations, the
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locations of which may change? daily [24, 25, 34].

2.8.1 Forecasting with a Perfect Model

Figure 2.2 shows three ensemble forecasts in the perfect model scenario: A
new ensemble is initiated every four time units (as denoted by the circle
superimposed upon truth). Although the initial condition is not known
exactly, we will assume a perfect model in this section: that is, the equations
and parameter values are known exactly and the same integration scheme
is used by the model and the system. Further we assume that the system is
chaotic, although this assumption is not necessary if we have only a finite
duration of observations.

Brillouin [12] clearly shows how observational uncertainty limits our
knowledge both of the current state and of the future; general arguments [28]
establish that the current state is often not uniquely defined given uncertain
observations over any duration. A simple way to see that this is true is to
consider a special case of a chaotic dynamical system for which stable and
unstable manifolds of the current state exist and where the observational
uncertainty is due only to quantization (i.e., truncation error). Clearly,
there are portions of the unstable manifold within the current quantization
box, which are also in the same series of previously observed boxes; that is,
a set of trajectories which agree with all previous observations exactly, say,
equal in the first three digits. This implies an infinity of states consistent
with the observations. Thus no unique current state is defined by the ob-
servations, and therefore there can be no unique future state. Accountable
forecasts must consider this infinity of states and attempt to maintain the
initial uncertainty, quantifying its evolution during the forecast.

The forecast approach shown in Figure 2.2 will fail in this aim. The per-
fect model is used, and the initial conditions used are consistent with the
uncertainty in the current observation. Since the model is perfect, the en-
semble may contain trajectories which remain indistinguishable from the
observations arbitrarily far into the future; such a model is said to t-shadow
the system [20, 56, 58]. Further the forecast PDF is a valid Monte Carlo
approximation of the Fokker-Plank equations, given the observational un-
certainty. In what way then is the forecast PDF incorrect?

When making ensemble forecasts we can estimate the probability of fu-
ture events simply by counting the number of ensemble members in which
the event occurs; counting, for example, the number of ensemble members
in which there are clear skies over Oxford for a 24 hour period of interest.
By grouping together various forecasts (made on different days) which hap-
pen to have the same predicted probability, we can determine the relative

2The idea being to take data at locations where the current level of uncertainty most
hinders the forecast at some future time.
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X (1)

FIGURE 2.2. Perfect model ensemble forecasts for the Lorenz sys-
tem of Equations 2.1 and 2.2 showing an Z; component of the true
trajectory (solid) and of the forecast trajectories (dashed) from three
perfect model ensembles. The members of each ensemble are consis-
tent with the initial observational uncertainty. In this case the model
and the system are identical but the values of the #; are imperfectly
known; for convenience, the true § values are used in each case. Every
four steps an ensemble of initial conditions is forecast (each initiation
is denoted by a circle). Visually, one can identify the time at which
any one best guess forecast is likely to become unreliable. Yet one
cannot obtain an accurate probability forecast from these ensembles,
since the probability that an initial state is mistaken of the true state
differs from the probability that that state is the true state.

frequency with which the event occurred on the days where the predicted
probability was, say, about 10%. Ideally, this relative frequency should be
near 0.10. To achieve this ideal requires a model capable of producing a
realistic trajectory and an initial ensemble which gives the correct relative
weight to physically relevant points consistent with the observational un-
certainty. Of course, evaluating the accuracy of extremely low probability
events, like the example above, may require extremely long data sets in or-
der to collect enough statistics to obtain a reliable estimate of the relative
frequencies (see Murphy [44, 45] and references therein; Smith [57] provides
a low dimensional dynamicist’s point of view and examples.).

Obviously a perfect model contains initial conditions consistent with the
observational uncertainty which +-shadow for an arbitrarily long time. This
is not the question, however. The difficulty lies in determining the subset of
initial conditions which are physically relevant. Suppose, that the system
evolves on a manifold with dimension less than that of the system state
space. Physically relevant points are restricted to the manifold, while the
observational uncertainty will, in general, extend into the full state space:
we are required to select only initial conditions from a set of zero measure
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on a manifold we do not know a priori . In this case the probability that
a state y cannot be distinguished from the true state is not equal to the
probability that it is the true state; the true state will lie on the manifold,
y need not, as illustrated in Figure 2.3. If we do not restrict our ensemble
members to this manifold, then the predicted probabilities will not match
the relative frequencies; this is nicely demonstrated by an example due to
Gilmour [20], shown in Figure 2.4. The evolving probability distributions
in the left column (Figure 2.4 a) reflect ensembles consistent with the anal-
ysis uncertainty but not constrained to lie on the attractor, as in Figure
2.2. Contrast the unconstrained ensembles in the left column for 1 < ¢ < 2
and 2 < t < 3, with the corresponding perfect ensembles in the right col-
umn: in each case the unconstrained forecast grows much too wide, due
to including initial conditions which cannot be distinguished from the true
state given the observations, but also cannot be the true state since they
are inconsistent with the (unknown) longterm dynamics (i.e., they are not
on the attractor). Interpreted in terms of the schematic in the right panel
of Figure 2.3, the unconstrained ensembles choose members from the 2 di-
mensional plane weighted by the isopleths, while the perfect ensemble only
admits points on the attractor (the dots), again weighted by their relative
likelihood given the isopleths of uncertainty. The unconstrained ensembles
succeed in giving a general estimate of when the (unconstrained) analysis
will become unreliable, but unlike the perfect ensemble these unconstrained
ensembles cannot yield accountable probability forecasts.

04Noninvertible Observational Uncertainty

FIGURE 2.3. Left: isopleths of the probability of an observation, given
that the true state (+) is (1.0818408, 0.28764392), note that (4) lies
on the attractor. Right: isopleths of the probability that a state would
give rise to the observation (+) given the observational uncertainty;
but without knowing whether a point in state space is on the attractor,
one cannot compute the probability of its being the true state. In this
panel, the observation (+) is not on the attractor.

As indicated on the left panel of Figure 2.3, we can compute the prob-
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ability of an observation Xops given the true state and the statistics of
observational uncertainty (or the analysis uncertainty if any noise reduc-
tion is attempted). And as indicated on the right panel, we can compute the
probability that a given point x could give rise to the observation xops, but
we cannot compute the probability that a given x is the true state given
only the observation and the noise process if the system evolves on a lower-
dimensional manifold. To obtain the probability that x is the true state
requires® additional information (the manifold or the invariant measure in
the case of a strange attractor). Without this additional information, the
initial PDF will assign positive probability to points in state space which
cannot correspond to the true state, and thus the initial PDF will be in-
correct. And if the initial PDF is wrong, then the final PDF is wrong,
almost certainly. We may be able to state approximately the probability
of falling outside a region of state space, but we cannot obtain an accurate
probability forecast. This again emphasizes that it is misleading to think of
“uncertainty in the initial condition” in terms of a single well-defined state
to which a random variable is added to yield the analysis. It is often better
to think of “truth” as a random choice from the physical states consistent
with the observations. To obtain a perfect ensemble (one with accurate
predicted probabilities) one must choose ensemble members from the same
distribution with the same relative weighting. In general, if the system is
evolving on a lower dimensional manifold (or attractor) this cannot be done;
at least not without a perfect model and a huge computational effort.

We return to that point in a moment; but first stress that there is noth-
ing “low dimensional” about this manifold: in the 107 dimensional systems
common in NWP, a 107 — 1 dimensional manifold counts as lower dimen-
sional. Further, many practical forecasting systems (including NWP) are
likely to fall into a Catch 22: if the system evolves on a lower dimensional
manifold, then obtaining perfect ensembles may prove intractable; but if
the number of active degrees of freedom is equal to the dimension of the
state space, then there is an insufficient number of observations to initialize
the model in the first place. In practice, models can be initialized given the
observations, so physical constraints implicit in the equations of the model
must lower the effective number of degrees of freedom; but if the system
evolves on a lower dimensional manifold then ... .

Of course, high dimensional modeling (e.g., those with high spatial reso-
lution) assumes that “the physics” restricts the effective number of active
degrees of freedom. In practice, weather models tend to evolve the equa-
tions of motion of a fluid in a three-dimensional space (either in a grid point
form, a spectral form, or both); given this restriction on model structure a

3The extent to which this is relevant to NWP is discussed in Section 2.4.2, it is clearly
relevant to forecasting systems whenever the the projection of the attractor (or manifold)
into the model-state space is lacunar on the length-scales defined by the observational
uncertainty. Stephenson [61] notes implications this holds for quantifying analysis error.
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FIGURE 2.4. Comparison of (a) unconstrained ensembles and (b) per-
fect ensembles based upon the same observations. Each 64 member
ensemble is evolved under a perfect model of the Marzec Spiegel sys-
tem [40] and projected onto z € [—1,1.5]. Time increases upwards. The
gaps in the vertical indicate when new ensembles have been formed
about the corresponding observation. Note that the distributions of
the perfect ensembles just prior to the gaps tend to be tighter and
more closely aligned with the distribution just after the gap (i.e., in
closer agreement with the verifying observations). The distribution of
the observational uncertainty was U3(0.01). Figure from Gilmour [20].
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high-resolution model may be required to obtain a good representation of
a low-order manifold. Ideally we might use a (lower order) model structure
whose model-state space consisted only of the manifold, but at present our
understanding of the physics is based on a spatial representation of atmo-
spheric fields, and there is not yet sufficient data to construct the desired
manifold empirically. We cannot formulate (much less integrate) the phys-
ical equations restricted to this manifold. Good low-order behavior may
require high-resolution models*.

There is something of a symmetry here between NWP forecasts and
forecasting on strange attractors via delay embedding, as is common in
nonlinear dynamics [54]. A major aim of the dynamic reconstruction in
delay space is to model only the manifold, or only the lowest dimensional
space within which the manifold can be embedded. But once in this low
dimensional space, there is no simple way to return to the physical state
space of the system, that is, there is no method for interpreting model
states in terms of physical variables other than those observed. Even though
the dynamics of the reconstruction are diffeomorphic to dynamics in the
full state space (on the attractor), an interpretation in terms of physical
variables is much simpler in the full state space. In NWP the difficulty is
in restricting the “physical variable” model to the manifold, while in delay
reconstructions it lies in interpreting points on the manifold in terms of
physical variables.

The existence of the right hand column of Figure 2.4 indicates that per-
fect ensembles are not always unobtainable. Given a perfect model, the
issue is one of computational expense which is, in turn, determined by the
resolution of the observations and the recurrence time of the system. To
build a perfect ensemble, we simply wait for an analog. The relevant ques-
tion is: how long must we evolve the model before we obtain two states
which are indistinguishable given our observational uncertainties? The 64
member perfect ensembles of Figure 2.4 were obtained by collecting analogs
in this way [56]. For third-order chaotic systems, this is often computation-
ally feasible; for the Earth’s atmosphere, however, a single return to within
the current observational accuracy over a large area like the northern hemi-
sphere has been estimated to require 1030 years [66]; this is significantly
longer than the lifetime of the atmosphere (and likely to exceed that of the
Universe, for that matter). And the model must be perfect: an arbitrarily
good weather model can have a horrid climate, and it is the climate (the
attractor) we must sample to obtain good probability weather forecasts.
Our agent can do this because she has a perfect model and unlimited com-
putational power. In Section 2.5 we note that if the model is imperfect, no
perfect ensembles exist (almost certainly).

41 am grateful to P. Young and A. Lorenc for persuasively arguing the merits of the
low-order approach and of the high-resolution approach, respectively.
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We close this section with an epistemological question. In a recurrent
system, perfect ensembles can be constructed with an analog approach
(assuming that the successive returns are completely decorrelated!); in a
non-recurrent system, or a system whose recurrence time is long compared
to its likely lifetime, what meaning can be given to an ensemble forecast?
Taking uncertainty in the initial condition seriously also raises a practical
question: if we hold “truth” to be a point in state space, then we are
forecasting a probability distribution in state space which we must verify
with a single point. How might we do this?

2.4 Ensemble Verification

For each initial condition, an ensemble of initial states is forecast but only
a single state exists with which to verify the forecast®. How might we
evaluate that ensemble forecast? An individual ensemble forecast cannot
be verified, but the consistency of a series of ensemble forecasts can be
verified. For forecasts of scalar quantities the standard approach is to use
rank histograms [5, 6, 21] commonly refered to as Talagrand diagrams.
Assume for the moment that we have a perfect ensemble: our ensemble
was chosen from the same distribution as “truth”; in this case nothing can
distinguish “truth”, it is just another ensemble member. This fact may
be exploited, for example, by counting the number of forecasts which are
greater than “truth”. This is illustrated in Figure 2.5 which shows the
evolution of some scalar quantity; time runs from left to right and we have
adopted the meteorological technique of denoting the “true” trajectory as
a straight horizontal line. Eight member ensembles of model trajectories
appear at regular intervals and diverge from “truth” at a rate that depends
on the local nonlinear structure of the model. Given a perfect ensemble, the
number of ensemble members above “truth”, N,ye., should be uniformly
distributed between 0 and N; better still the variance of any one bin in
such a histogram is easily estimated. In operational NWP, the first bin and
last bin tend to be overpopulated: truth falls outside of the ensemble much
too often.

For the imperfect ensembles in the left hand column of Figure 2.4, which
are consistent with the observational uncertainty but not constrained to
lie on the attractor, the Talagrand diagrams are under-populated at the
extremes; this is to be expected when the ensemble regularly contains initial
conditions not on the attractor and which diverge rapidly. For the perfect
ensembles in the right column of Figure 2.4, the Talagrand diagrams are

50ne might treat the verification as a PDF consistent with the observational uncer-
tainty and centered upon the analysis, but the results below are easily generalized to
that case.
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FIGURE 2.5. A schematic of ensemble evaluation one dimension:
count Nyyer, the number of forecasts greater than truth for each lead
time. If perfect ensembles are used, then N,,., should be uniformly
distributed; in N.,, experiments, we expect the relative frequency
of a particular value of Noyer to have mean Negp/Npins and variance
Neap(Npins — 1)/Nb2im, where Ny, is just the number of members in the
ensemble plus one.

consistent.

Note that the Talagrand diagram can only be used for scalar forecasts
since it relies on the rank ordering of the forecast values. Attempting to
combine diagrams of different forecast values (say the temperature in Lon-
don, that in Berlin, and that in Paris; or the geopotential height at each grid
points in some region of interest), is ill-advised unless the predictands are
truly independent; an unlikely case. Given a perfect ensemble, these com-
bined diagrams would still be flat asymptotically, but we could no longer
compute the expected rate of convergence (i.e., the variance), and hence
could not determine whether diagrams based on a finite amount of data
were consistent with those expected from perfect ensembles or not.

2.4.1 Minimum Spanning Trees

The essence of one-dimensional approach can be generalized to high dimen-
sional spaces by employing minimum spanning trees (MST) [4] to detect
whether the ensemble members are simply additional draws from the dis-
tribution that generated “truth”. The idea is shown in Figure 2.6. Consider
a finite set of points in any metric space. A spanning tree is a collection of
line segments which connects all the points in a set with no closed loops.
The minimal spanning tree is that spanning tree in which the sum of the
lengths of the segments is smallest. The MST test then, is to take all N
member subsets of the N + 1 points (the N ensemble members and the
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control). If “truth” and the ensemble members are drawn from the same
distribution, then no computation can distinguish the spanning tree from
which “truth” was omitted [68]: we simply count Nyyer, now the number of
the N spanning trees where an ensemble member was omitted whose length
is longer than that of the MST where “truth” was omitted. It is not possible
to evaluate a single ensemble in this way, but given a collection of n en-
semble forecasts, a wide variety of systematic errors in ensemble formation
could be identified. Histograms of N, should follow the same statistics
as the histograms of the Talagrand diagram, with a relative frequency ap-

proaching 5 for each of the (N + 1) possible results (0,1,2,...,N) and

: 2 _1_N 6
variance 0% = J rxFqyz, a8 above®.

Four examples are shown in Figure 2.7. The upper left panel shows an ac-
ceptably flat distribution when both the verification and ensemble members
are chosen from the distribution in Figure 2.6. The upper right distribu-
tion reflects that when the verification is randomly distributed within the
frame of the figure, it is often too far from its nearest neighbor, leading to a
small MST when it is omitted, and thus an increasing histogram as shown.
Lower left panel shows the histogram which results when each verification
is taken from a line lying near the attractor; this graph is easy to reject
but its shape is less easy to interpret: again the verification is too often
too far from its nearest neighbor, but on those occasions when an ensemble
member is chosen from that part of the attractor near the line on which the
verification must lie, then the MST length of the tree omitting the verifica-
tion tends to fall in the middle range. Finally the lower right panel shows
the result when the variables are chosen independently, but each from the
corresponding correct distribution: the xz-component of the verification is
taken from a correct distribution of z values and the y-component of the
verification is taken from the correct distribution of y values. In this case,
both the Talagrand diagram for z and the Talagrand diagram for y would
have been found acceptable, but the MST test rejects since the conditional
distribution of x given y is incorrect.

2.4.2 Relevance to Operational Forecasting

Hopefully, the last few sections have made clear the difficulty of obtain-
ing perfect ensembles, even given a perfect model. This is without a doubt
a concern when forecasting low dimensional systems described by strange
attractors; if the perfect ensemble is lacunar and the operational ensemble
is not, then accurate probability forecasts will not be obtained. But is this
really an issue in operational weather forecasting? In operational forecasts

6Note that this is the variance in a given bin over many realizations, since the relative
frequency in each bin is not independent (they must sum to one), the variance of the
different bins in a single realization will differ from this, particularly when only a small
number of bins are used.
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FIGURE 2.6. A minimal spanning tree from the combined set of 8
ensemble members (dark dots) and the verification (light dot) which
is also on the attractor (and in this experiment “truth’).

where the system is evolving on a lower dimensional manifold or attrac-
tor (not low, just lower), and where the structure of the manifold is not
isotropic on the length scales resolved by the uncertainty in the analysis,
then yes these issues are important. For example, let the true state lie on a
line and the analysis uncertainty correspond to a uniform distribution on
a disk which the line intersects. In that case sampling the disk to form an
ensemble consistent with the analysis uncertainty yields an ensemble very
different from the perfect ensemble, which will only contain points from
both on the disk and on the line. Alternatively, if the manifold consisted of
many parallel lines, effectively filling the plane on length-scale defined by
the radius of the disk, then the unconstrained ensembles might prove simi-
lar to perfect ensembles, as long as they did not contain too many members.
In general, the difficulties above may prove less important in systems where
the invariant measure is smooth and slowly varying in state space (or its
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projection into the model-state space is uniform), or where the manifold
is so contorted on the scale of the observational uncertainty that it can be
treated as uniform. There may also be cases where the resolution of the
model is so coarse as to make the variations unresolvable.

Of course, it is also possible that model error is so large that the forecasts
go badly wrong before the effects above come into play. But in the limits of
accurate short term prediction models and small uncertainty in the initial
condition, the issues above will prove relevant both for low dimensional
dynamical systems and for the high dimensional weather models of NWP.
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FIGURE 2.7. Each panel shows a histogram of Nyyer, the number of
MSTSs omitting one ensemble member which were longer than the tree
omitting the verification. In every case, the ensemble members were
taken from the distribution shown in of Figure 2.6. Histograms reflect
when the verification was taken from: the same distribution (top left
panel), a uniform distribution in 2-d (top right), a uniform distribution
in 1-d (lower left), and with independently chosen z and y components,
where the distribution of each component matched that shown in of
Figure 2.6 (lower right).
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Meteorologists tend to distinguish forecasts made with large models
(NWP) from those made using less complicated empirical models and per-
sonal insight. While the NWP models get the most press, the simpler meth-
ods are sometimes quite good. This is most often true on small spatial scales
and short forecast times (hours) at locations for which there are long his-
torical records [71], and on very long time scales (seasonal or greater) where
the biases of NWP models may become evident [11, 51]. It would be inter-
esting to contrast the performance of ensembles in these empirical models,
with those under NWP for, say, seasonal time scales.

2.5 Imperfect Model Scenarios

Only hypothetical agents are allowed perfect models, we must deal with
realistic models. And this fact alters the philosophy of nonlinear forecasting
as fundamentally as the acceptance of uncertainty in the initial condition.
To see this, we introduce a model for the two level system of the previous
section which will play a role analogous to that weather models play in
relation to the Earth’s atmosphere/ocean system. Keeping Equations 2.1
and 2.2 as the system, we will consider models of the form:

d.fL‘z'

dt
These equations for the model variables x are structurally similar to Equa-
tions 1 which determined the large scale X dynamics of the system, they
differ in that the dynamics of the small scale fast variables, the y, have
been parameterized by the function P. A wide range of parameterizations
may be entertained; options we have explored for P;(x,t) include:

= —Zi2%i—1 t+Ti1Tit1 — Ti + H(X, t), =1, m (23)

Qg constant
ag + a1 x; linear
aqta-x m-linear

Pi(x,t) = H; (x) nonlocall
H(x, ﬁ—f) nonlocal2

LIDgps 1ID

| 1 P(x,t = 1) + N(0,7%) AR(1)

These parameterizations range from simple variations on linear models
(a constant, a linear parameterization based on only the local variable
7;, a linearization based on all m components’ of x), through nonlinear

71f the z;’s are interpreted as being distributed in physical space, then this last model
is nonlocal in physical space since it requires input from other grid points; it is a serious
complication given the computational structure of current weather models, but may
prove worth the difficulty of implementation as the spatial resolution of those models
improves.
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variations suggested by prediction studies in low dimensional nonlinear
dynamical systems [55, 17, 13, 27, 2, 1] (here H; is nonlinear and nonlocal
in physical space, while Hj is also nonlocal in time), and finally to simple
stochastic parameterizations (either choosing a value for P; at random from
the observed historical forcing, or fitting an autoregressive model to those
observations and using that AR model.).

One property each of these various parameterizations share is that they
are wrong: given that x € R™ while (%,§) € R™"t1)  there is, in general®,
no perfect model with the form of Equations 2.3 and thus no perfect en-
semble. Each model will have one distribution from which ensembles may
be drawn which will verify at 1-day; and a different distribution yielding
ensembles which will verify at 2-days, and so on. And even these distribu-
tions will vary from model to model. The forecast quality of each of these
models will be discussed elsewhere; the point of introducing them here is
to consider the question of what to do with them: should one search for
a best model? consider an ensemble over models? or something even more
radical? And what is the aim of ensemble forecasting in this context?

We start with an easier question: what is the correct value for g in the
constant parameterization? An obvious choice is ay = & where

hzc J
&= <F - Zyj,,-> : (2.4)
j=1

%

that is, the average value of the forcing term where the average is taken
over the invariant measure of the true system. But in a nonlinear system,
this value has no special claim to optimality; why not take the value which
minimizes the one-step forecast error? or minimizes the two-step forecast
error? or yields the longest mean (-shadowing time? or best reproduces
the invariant measure of the true attractor projected into the model-state
space [41]7 For the model-state space differs from the state space, x # X
even if both variables are called x. Thus the correct method for determining
the free parameters in the imperfect models above depends on the goal of
the forecaster. There need be no unique set of “true’ parameter values;
standing water need not at freeze at exactly zero degrees C in a good
weather model.

In a perfect model, there is a unique perfect ensemble corresponding to
all potential states of the system, each weighted by its probability given
the observations. In an imperfect model no perfect ensembles exist, and
it is doubtful whether a unique optimal ensemble is well-defined for the
same reasons that optimal parameters are not. None of these models will

80f course the inclusion of parameterizations H; and Hs was motivated by our knowl-
edge [54] that if the attractor is restricted to a manifold of dimension @ and the param-
eterization is evaluated only for states on the attractor, then perfect parameterizations
of the form H; and H»> (almost certainly) exist if 2Q < m or Q < m, respectively.
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t-shadow indefinitely; as we get more data we will find (almost certainly)
that the probability of the data given the model goes to zero; not just for
these particular models, but for every model in the model class(es) under
consideration. Although it is not clear if there is a natural definition of the
best model, at least on time scales much less than the recurrence time, it
does seem likely that an ensemble over models will out-perform the best
model for most reasonable definitions of “best.”

And there is no simple stochastic fix. While adding a random component
to a deterministic model may imply that a trajectory which stays near the
verification exists, such a trajectory cannot be said to ¢-shadow unless the
random innovations required are consistent with the source of stochastic-
ity specified by the model. For the AR parameterization above, the inno-
vations must be consistent (at some confidence level) with I.I.D. drawn
from an a priori specified Gaussian distribution. When model trajectories
are restricted to remain on an unspecified manifold, the construction of
stochastic terms which respect this constraint appears nontrivial. In prac-
tice, the stochastic models we have explored in this context are consistently
over-dispersive in model-state space.

12
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FIGURE 2.8. The trajectory of Figure 2, this time showing truth
(solid) and 3 forecasts of 4 imperfect models: Linear (dark dotted),
Constant (light dotted), IID (dark dashed), and AR1 (light dashed).
At each of the circles an ensemble of model trajectories is initiated
using the exact values of Z, one trajectory for each model .

Forecast ensembles over models are shown in Figure 2.8; here there is no
observational uncertainty when the model is initialized: each initial condi-
tion is exact (i.e., the analysis corresponds to the true state projected into
the model’s state space). Since each of the individual models is wrong, the
PDF will be incorrect, furthermore there need be no initial condition for
any imperfect model which will -shadow for the duration of the forecast.
And finally, no analog of the perfect ensemble exists; since an arbitrarily
good weather model can have a horrid climatology. No model ensemble
scheme will verify accountably, nor can a level of accuracy can be deter-
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mined a priori which will guarantee a bound on the uncertainty of the
forecast at a fixed future time. The only option for an accountable ensem-
ble is to wait for physical analogs, as suggested by Lorenz [35] in terms of
a single forecast; for daily weather, that may take some time.

Of course, a forecast trajectory in the future need not be held to the
same standards as analysis trajectory of the past. While an (-shadowing
trajectory must exist for coherent variational assimilation, forecast models
unable to produce an (-shadow trajectory may still be of great value. A less
constrained notion of shadowing is required: ¢-shadowing.

2.5.1 ¢-shadowing

A model ¢-shadows for a time 74 if the model contains an initial condition,
consistent with the initial observational uncertainty, which resembles the
future closely enough for a forecaster: a ¢-shadow need only be useful.
This differs from (-shadowing, for example, in that relatively large errors
in the time of onset of a rain storm may be accepted (as long as a storm
is forecast), or relatively small variations in the strength and location of
spatially coherent structures may be acceptable (although these errors often
result in huge contributions to the RMS error of a predicted field). The idea
is to adopt an operationally relevant definition of what constitutes a useful
forecast trajectory (see Murphy [44] for a discussion of what constitute a
good forecast); determining the median of the distribution of times 74(X)
over which a given model can ¢-shadow provides a bound on predictability
beyond which the use of Monte Carlo ensembles is, at best, questionable.
For it is difficult to conceive of a useful purpose for ensemble forecasts
beyond the time horizon over which the model can ¢-shadow: if there is
no initial condition which will reflect the future even roughly, what can
be gained from a distribution of such model error dominated trajectories?
This only argues for the existence of a ¢-shadow, ideally the higher the
probability of finding them, the more useful the model.

Requiring a ¢-shadowing trajectory to exist is a much looser constraint
than requiring a model to +-shadow. A model (-shadows for a time 7, if it
contains a trajectory which is consistent with the observational uncertainty
at all times t, 0 < t < 7,. The tolerance is set by the uncertainty in the ob-
servations?, and will be much more restrictive than just requiring a useful
forecast [20, 56, 58]. If the observations are limited only by quantization
uncertainty due to truncation, then to -shadow a trajectory must fall into

9In real applications, of course, the real measurements are rarely equivalent to the
variables in the model-state space; there is an entire field of endeavor dedicated to
relating point-wise physical measurements to grid point model variables, and the relation
of both to the three-dimensional fields they are taken to represent. On which natural
length-scale can one coherently define wind? or identify it with the velocity variables
evolved within a model?
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the quantization box corresponding to the observation at each observation
time. For Gaussian uncertainties, some confidence level « must be cho-
sen. Experience indicates that shadowing time is not very sensitive to this
choice; at least in low-dimensional systems, once things go wrong, they go
badly wrong rather quickly!?. Given two diffeomorphisms, Anosov [8] and
Bowen [10] determine sufficient conditions to guarantee the existence of an-
other type of shadowing, but this e-shadowing contrasts the trajectories of
two well-defined mathematical systems; it is based upon assumptions which
make it irrelevant (although nevertheless comforting) when contrasting im-
perfect models and real data (see Gilmour [20] for additional discussion).
In practice, what we require are more vague but still quantifiable shadows,
more along the lines of Eddington’s use of the term [15]. Finding shadows
is not so enlightening as realizing when they do not exist.

2.5.2 Bounding Boxes

Examining worst case scenarios is another common goal in weather fore-
casting. One approach would be to use the ensemble to define a region of
model-state space within which the future is likely to fall''. The obvious
method (see Figure 2.9) is to construct a convex hull from the ensemble
members, and this is very useful in low dimensional models. But inasmuch
as it requires m + 1 points to define a convex hull in m dimensions, this
approach is untenable with ensembles of about 102 members in a typical
model where m ~ 107 .

An alternative to the convex hull is the bounding box, which has the
advantage that it requires only two points and a coordinate system, re-
gardless of the dimension of the model-state space. Consider a model on a
spatial grid; at each grid point (for each variable) take the maximum value
over all ensemble members: this co-dimension one plane is one “side” of
the box, while the plane corresponding to minimum value forms the side
opposite. Repeating this for all variables defines a volume of state space.
Figure 2.9 uses the ensemble of Figure 2.6 to show both the convex hull
(solid boundary) and bounding box (dotted boundary) defined by this en-
semble. Note that the verification (which is truth, in this case) falls just
outside the bounding box, but since the ensemble members were drawn
from the same distribution as truth, then truth is no more likely to fall
outside than any member of the ensemble. In cases where both are defined,
the bounding box always has a greater volume than the convex hull, of
course, and hence provides a larger (i.e., easier) net with which to bag the

10Note, however, that the sci-fi models of Judd and Mees [27] in this volume address
this problem explicitly.

1 More precisely, to define a region which will contain the verification at the a level of
confidence; ideally « is 100% but finite ensembles make this unlikely even in the perfect
model scenario.
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verification. We have not found this advantage to result in over-confidence

in the model when the bounding box test is applied to forecasts of real
data.

ke
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FIGURE 2.9. The convex hull (solid boundary) and bounding box
(dotted boundary) for the ensemble of Figure 2.6.

In this scenario, it is straightforward to estimate the number of ensemble
members required to have, say, a 95% chance that truth falls within the
bounding box defined by the ensemble. This can be done analytically when
the distributions are Gaussian as a function of standard deviation and
bias [29]. Indeed, we plan to use this result to estimate bias of operational
NWP ensembles. Of course, adopting the spatial grid carries the added
bonus that so long as the verification is within the bounding box of the
ensemble forecast, then nothing unexpected can happen. The target here
contains much less information than an accurate PDF forecast, but in the
imperfect model scenario there is no accurate PDF to be had.
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2.5.8 Applications to Climate

Bounding boxes may also be of use in climate modeling. Typically one
does not expect to find a ¢-shadow in the climate model context where
the goal is to reproduce the general statistics of likely states rather than
a particular forecast trajectory. Lorenz [36] refers to this goal of climate
modeling as predictions of the second kind. Yet the atmospheres of climate
models may still be quite sensitive to initial condition, even when forced by
observed sea surface temperatures (SST). Further, climate models are often
run in an ensemble mode over historical periods, say, an ensemble of fifty
year runs where each member is started from the analysis corresponding to
a different day in 1950. While one should not expect to run large enough
ensembles to produce even a ¢-shadow over a 50 year period, it is reasonable
to ask how large an ensemble would be required so that the analysis (or
reanalysis [30]) for January 15, 1970 falls within the bounding box of all
climate states of all ensemble members taken on all days between, say,
January 1 to January 31, 1970. The point being that if reality (or even the
analysis) consistently falls outside this bounding box, then the (dynamical)
statistics of the climate model would be placed in doubt. Identifying specific
historical periods where the model consistently fell outside the bounding
box might aid in the identification of physical processes (active during
those periods) which were insufficiently reproduced in the model. Over the
historical record, one might hope for return of skill in the climate ensemble,
inasmuch as each member is guided by the observed SSTs; in a free running
fully coupled model the minimum size of the ensemble required to obtain
a bounding bounding box would again be of interest in estimating the
additional length of time (or number of ensemble members) that would
have to be run to explore the additional degrees of freedom released.

Both the MST and the bounding box can be used to investigate natural
variability of the climate system, either over time or in establishing whether
the January 1 anomalies, variance adjusted, are the same in distribution
as those of August 1. Given the short duration of many climate records, it
is not uncommon to combine data from different seasons, once each data
point has been adjusted to “remove seasonality.” Examining the relative
frequency with which the data from one calendar day fall into the bounding
box defined by data from the day 6 months later, or the MST equivalent,
would provide a useful check on whether simply adjusting the mean and
variance is sufficient.

2.6 Multi-model CPT Ensembles

In this section a new method of truly multi-model ensemble forecasting is
presented which attempts to take the limitations discussed above seriously.
If we accept that each of our models is incorrect, that the “correct initial
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PDF” is as ill-defined as the “true initial state”, then we can construct
a multi-model forecasting scheme which will outperform any individual
model both in terms of ¢-shadowing and in terms of the duration for which
the verification remains within the bounding box defined by the ensemble
members, at least in the limit of huge ensembles.

The simplest reaction to having M models is to identify the best one,
discard the others, and compute M x N member ensembles under this
single “best” model. If the models are of comparable quality, then it is
likely that different models will tend to do better in different regions of
state space (i.e., on different days), due to variations in the particular
processes that are important locally. In practice, there is rarely enough
data to identify which one will be the best on a given day, and a reasonable
alternative is to compute M, N-member ensembles, one ensemble under
each model. Note that neither approach can produce a ¢-shadow longer
than the longest ¢-shadow found within the individual models. If the M
models really do have independent shortcomings (ideally, if they fail to
t-shadow in different regions of state space), then it is possible to cross-
pollinate trajectories between models in order to obtain truly multi-model
trajectories that explore important regions of state space the individual
models just can‘t reach. This Cross-Pollination in Time (CPT) approach
can outperform both of the methods above.

The basic CPT approach first takes the M N-member ensemble forecasts
made under each model and combines them to form one large set of N x M
points in the model-state space. This large ensemble is then pruned back
to N member states, attempting to maintain a large bounding box while
deleting one member in each pair of relatively close ensemble members
(the details of the PDF are wrong anyway). These N conditions are then
propagated forward under each of the M models. And so on.

Inasmuch as the CPT ensemble model implicitly contains all trajectories
of each of its constituent models, CPT can ¢-shadow as long or longer than
any of the individual models. Similarly, in the limit of large ensembles, or in
the absence of pruning, a CPT bounding box will contain the bounding box
of the best model; and it is expected that given a good pruning scheme,
the bounding box of the CPT ensemble will be more likely to contain
the verification over a longer duration than those of an M x N member
ensemble under the “best” model. While the optimal pruning scheme is
still an object of research, the simple approach of taking the nearest pair
of points, and then deleting the one of these two points with the smallest
second nearest neighbor distance, has been found to work fairly well in
some simple examples. Note that the aim of pruning is quite different than
that of resampling from an estimated PDF [9)].

This approach assumes that either all the models share the same model-
state space, or the one-to-one maps exist which link their individual state
spaces; neither needs be the case in weather forecasting. And, of course,
when parameterizations of physical processes are involved one must con-
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sider the time scale of pruning: for example, we would wish not to switch
between parameterizations in the midst of growing a cloud. But at least the
preliminary step of being able to run a collection of operational models on
the same computer system has been achieved at the European Centre for
Medium-range Weather Forecasting (ECMWF). Switching between models
is a nontrivial process, and some may find it objectionable in principle as
there is no longer a “set of equations” which are being solved, although
one might argue that the process is, in fact, solving a rather large iterated
function system. Ideally, future research will resolve the issues above while
retaining a closed form for the model, if not the solutions. But it is interest-
ing to note that physics of late has gotten along rather well without always
building the mechanical model Lord Kelvin [33] held to be the prerequisite
for understanding one hundred years ago. Perchance the twentieth century
will be remembered as the “Century of The Equation.”

2.7 Discussion

Chaotic systems are often thought unpredictable since they have the prop-
erty of on-average exponential growth of infinitesimal uncertainties, at least
when the (geometric) average is taken over a trajectory which explores the
entire attractor. Yet this “exponential on average” growth places no bounds
on (i) the growth of a finite uncertainty, or (ii) predictability over any finite
time horizon, or (iii) the average uncertainty doubling time. The dynam-
ics of uncertainty are much richer than simple uniform exponential growth
[47, 60]. Lyapunov exponents are only effective rates, nothing need actually
grow like eget.

Of course simple mathematical models of chaos, designed with tractabil-
ity in mind, tend to have fairly uniform growth rates (by construction); this
can yield a very biased picture of predictability. In the Baker’s Map [49]
for example, the fastest uncertainty doubling time of each initial condition
is one iteration and the Lyapunov exponent is equal to one bit per itera-
tion. Yet within the family of Baker’s Apprentice Maps [59], all of which
have a Lyapunov exponent greater than one, there are maps with arbi-
trarily large average doubling times [57]. Even in the Lorenz 1963 model,
there are regions within which all perturbations must shrink for a (finite)
time [60, 46]. Vannitsem and Nicolis [67] investigate these inhomogeneities
in an atmospheric model.

Only in systems where the dynamics linearized about a trajectory accu-
rately reflect the true nonlinear dynamics at macroscopic scales of interest,
do Lyapunov exponents have any impact on predictability. As long as uncer-
tainty stays infinitesimal, it cannot limit predictability, and once it is finite
the Lyapunov exponents need not provide a reliable guide for uncertainty
growth. Whether locally defined [3, 70] or global [14], Lyapunov exponents
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are only effective rates, and even when infinitesimal perturbations really
do grow exponentially in time, the uncertainty growth may saturate at an
amplitude much less than the diameter of the attractor. This is clear from
the macroscopic structure visible in Figure 2.4. In general, there need be
no “Lyapunov Horizon”.

Orrell contrasts forecast uncertainty growth due to chaos with that due
to model error [48]. Assume for the moment that the model is perfect and
an that forecast error does grow as

(e(t)) = eoe™. (2.5)

In this case, the value of {(e(t)) at any fixed ¢ can be made small by taking
a sufficiently small €q. If the model is not perfect, however, there will be a
difference between the velocity of the model trajectory in the model-state
space and that of the system trajectory (projected into the model-state
space). This difference remains even when ¢y = 0 leading to an initial error
growth which is linear in time thus (initially) greater than eget. Thus for
an imperfect model

(e(t)) = Bt (2.6)

where the value ¢ is the magnitude of this velocity difference averaged
over the projection of the system’s invariant measure into the model-state
space!'?. For an imperfect model, # > 0 and therefore the forecast uncer-
tainty due to model error will always dominate the forecast uncertainty
due to chaos for sufficiently small 5. While “chaos” can make the error
growth greater still, as ¢¢ — 0 model error will dominate. Worse, it is not
clear how to correct this with ensemble forecasts.

Given a perfect model, one might construct a perfect ensemble; but even
if the model structure is correct and only the values of model parameters
are uncertain, accurate PDF forecasts seem beyond reach. One may sample
the parameter space in a sensible way, and construct a perfect ensemble for
each realization, but the resulting ensemble PDF will not accurately reflect
the likelihood of finding the properties of the future trajectory which will
be observed. It is not obvious how to construct ensembles over model class.

Is the model class of deterministic systems too small? Perhaps [64], but it
is not clear how to best introduce stochastic dynamics in structures where a
strong deterministic nonlinear component is easily extracted; this is partic-
ularly the case when the deterministic dynamics are known to lie on a lower
dimensional manifold, the details of which are not known. Other contribu-
tions in this volume [18, 19, 69] suggest a number of avenues. The operative
question is how to best model the phenomenon: the issue of whether a real
system “really is” deterministic or stochastic cannot be resolved from real
data [39, 57]. Determining how to best model a phenomenon turns on the
issue of how we decide to evaluate our models. This paper is intended to

120rrell [48] illustrates this relationship in the Lorenz 1996 system, deriving the vari-
ation in 7 as a function of the parameter F' in equation 2.1.
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stimulate debate on sane methods of model evaluation; there may be no
best.

Is an accountable probability forecast a viable goal? Perhaps not. The
rank histogram evaluation techniques of Section 2.4 assume that “truth”
is indistinguishable from the members of the ensemble, that all are drawn
from the same distribution. This is never the case in practice, where we be-
gin with uncertainty over initial condition, boundary condition, parameter,
and even model structure. The verification is never “just another member”
drawn from this distribution. For perhaps the one thing we are certain
of is that our model class is incorrect: the very structure of our models
will change with additional observations. This eventuality need not stop us
from decreasing our uncertainty and refining our probability forecasts, but
it will prevent our forecast PDF from producing flat rank histograms.

2.8 Summary

Chaos poses no difficulties for LaPlace’s demon [31], whose abilities were
such that given one exact snapshot of a dynamical system, a perfect fore-
cast of the future could be calculated. Such a forecast is beyond the powers
of a modern incarnation with the same abilities but without access to ex-
act observations; even given imperfect measurements which stretch back
into the distant past, she cannot determine the current state of the sys-
tem from among a set of indistinguishable states. She can, however, foresee
the probability of any eventuality. For mortals with imperfect models, even
the foresight of exact relative probabilities is lost; we must expect to be
surprised, occasionally, as there will be events which cannot even be fore-
shadowed.

As has long been recognized, uncertainty in the initial condition limits
the utility of single deterministic forecasts of nonlinear systems like the
Earth’s atmosphere. If this uncertainty is accepted, then internal consis-
tency requires that an ensemble of initial conditions, each consistent with
the observations, be evolved forward under the model. Methods for select-
ing these initial conditions [38] have been advanced by Lorenz in 1965 and
competing operational approaches dating back to the early 90’s are used
in the European and American weather forecasting centers. Assuming that
the model physics is perfect, these methods aim at a weighted selection of
the perfect ensemble [56, 57], where the weighting scheme depends on the
aim of the forecaster.

Even under ideal conditions, uncertainty in the initial condition also lim-
its the utility of single deterministic predictions of deterministic nonlinear
systems; in practice ensembles of initial conditions are forecast with the
dual aims of (1) estimating the reliability of that forecast and (2) esti-
mating some aspects of the probability density function (PDF). Current
rank histogram verification techniques are limited to scalar forecasts; Sec-
tion 2.4.1 introduced a method using minimum spanning trees to allow
computationally efficient verification in higher dimensional spaces, includ-
ing the 107 dimensional weather model forecasts. Given a perfect model,
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one may construct an accountable ensemble forecast system by sampling
from a perfect ensemble; this scheme can yield accurate probability den-
sity estimates. In general, no perfect ensembles exist for imperfect models.
If accountable estimates of the forecast PDF are unobtainable, we should
question whether current skill scores provide a reliable guide for model
improvement.

Ensemble prediction systems can consider Monte Carlo ensembles over
initial conditions, parameters and model structure. If accurate probability
forecasts prove untenable, what viable aims exist? T'wo have been discussed
in Section 2.5: obtaining at least one good forecast trajectory (a ¢-shadow),
and constructing an ensemble whose bounding box is likely to contain the
verification. In the long term, the bounding box of a large ensemble will
evolve toward that of the climatology, containing all the observations and
hence almost certainly containing whatever it is we are attempting to fore-
cast; ideally we wish the box to grow as slowly as possible, but no slower.

Several shades of shadowing trajectory have been distinguished, and each
has application in operational forecasting. The distribution of -shadowing
times reflects the longest time scales over which there exists a model tra-
jectory consistent with the observational uncertainties. How long can op-
erational weather models t-shadow? Inasmuch as variational data assimi-
lation assumes t-shadows exist, and may degrade the analysis if there is
no t-shadow over the entire assimilation window, knowledge of these time
scales is of operational value, since t-shadowing times would reveal limits
to variational assimilation. ¢-shadows need not stay so near the verifica-
tion; indeed some practitioners at ECMWF already look for something
similar to a ¢-shadow when evaluating operational forecasts (Tim Palmer,
personal communication). Their real value may come from examining his-
torical data: if due to model error no useful forecast exists beyond some
time scale, then what can model forecasts (ensemble or otherwise) possibly
tell us regarding times beyond that horizon? This predictability horizon,
the time scales at which the contribution of model error to the forecast is
large compared to the natural variability of the system, is quite indepen-
dent of time-scales derived from Lyapunov exponents. Sometimes greater,
sometimes not. But the question is no longer the classic issue of not being
able to find the correct initial condition; it is now an issue of there being
no correct initial condition to be found.

Accepting the fact that an accurate PDF cannot be obtained allows con-
sideration of other methods of evaluation. Two options are to examine the
distribution of ¢-shadowing times of each model, and to estimate the en-
semble sizes required to obtain an ensemble bounding box which contains
the verification at various lead times. A somewhat more drastic result fol-
lows from accepting the ensemble paradigm completely and considering
not only ensembles over trajectories from different models, but even in-
dividual trajectories which are evaluated using multiple models, the CPT
approach introduced in Section 2.6 being a naive first step in this direction.
Nevertheless, CPT multi-model ensembles can outperform any individual
model in terms of both ¢-shadowing and producing a good bounding box,
while unashamedly producing an ensemble mean that does not resemble
the verification, and an MST rank histogram that is inconsistent with an
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accurate probability forecast. Accepting the limits which exist even in ideal
scenarios will force us to reevaluate the aims and evaluation of operational
forecasting. Failure to do so is madness: there is no sane approach to an
ill-posed goal other than to alter the object of the exercise.
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