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Abstract—The electro-encephalogram is a time-varying signal that measures elec-
trical activity in the brain. A conceptually intuitive non-linear technique, multi-
dimensional probability evolution (MDPE), is introduced. It is based on the time
evolution of the probability density function within a multi-dimensional state space.
A synthetic recording is employed to illustrate why MDPE is capable of detecting
changes in the underlying dynamics that are invisible to linear statistics. If a non-
linear statistic cannot outperform a simple linear statistic such as variance, then
there is no reason to advocate its use. Both variance and MDPE were able to detect
the seizure in each of the ten scalp EEG recordings investigated. Although MDPE
produced fewer false positives, there is no firm evidence to suggest that MDPE, or
any other non-linear statistic considered, outperforms variance-based methods at
identifying seizures.

Keywords—Epileptic seizure, Electro-encephalogram (EEG), Seizure detection,
Non-linear methods, Identification, Prediction

Med. Biol. Eng. Comput., 2002, 40, 447–461
1 Introduction

EPILEPSY IS the most common serious neurological disorder,
with 4–5% of the population suffering at some time in their
life. If it were possible to develop reliable and robust indicators
of a seizure ahead of its onset, this would have considerable
impact on the quality of life of a very large number of
sufferers.

The electro-encephalogram (EEG) is a time-varying signal
generated by electrical activity within the brain and is
recorded either from intracranial electrodes inside the brain
or scalp electrodes on the surface of the head. This paper
focuses on the detection of epileptic seizures from scalp EEG
recordings. Analysis of the EEG involves investigating
recordings of long duration, for which the underlying
dynamics associated with different brain states, such as non-
seizure, pre-seizure, seizure and post-seizure, are typically
obscured by noise and artifacts. The amount of time taken
to examine such recordings visually suggests that an auto-
matic seizure detection system would alleviate the work of
EEG technicians who continue to score multi-channel records
manually.

Previous research has demonstrated that the dynamic
processes underlying EEG signals are likely to be non-linear
(THEILER, 1995; SCHREIBER, 2000) but found no evidence of
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low-dimensional chaos. There has been much debate concerning
whether or not the processes underlying epileptic seizures are
low-dimensional or display deterministic chaos (MARTINERIE

et al., 1998; LEHNERTZ and ELGER, 1998). One proposed
mechanism for an epileptic seizure is that neurons in a particular
region of the brain become synchronised (LARTER and
SPEELMAN, 1999), leading to a reduction in the complexity of
the observed electrical activity. Some evidence of this synchro-
nisation has been found by investigating EEG signals from
neighbouring channels using intracranial (ARNHOLD et al.,
1999) and scalp (ALBANO et al., 2000) electrodes.

Although understanding the dynamics underlying the EEG is
an important goal, the operational questions here are whether or
not the fundamental non-linearities are sufficiently robust that
they may be detected and whether or not they are related to the
epileptic seizures. If both of these are the case, then non-linear
statistics will be able to outperform traditional linear statistics.
As linear statistics have the advantage of being easy both to
understand and to implement, this paper aims to investigate
exactly how much is to be gained from using non-linear
statistics.

2 Methods

2.1 Synthetic data

As the dynamics underlying the EEG can never be known
exactly, it is useful to test different analysis techniques on a
system for which the dynamical equations are known. The
following system is defined such that a single parameter controls
the amount of non-linearity in the dynamics at any given instant
in time. Consider a random process with linear temporal
447
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Fig. 1 Comparison of AR(1) process xi given by (1) with non-linear deterministic process zi given by (2) for a ¼ 0.95: (a) time series of xi; (b)
PDF of xi; (c) auto-correlation function of xi; (d) return map of xi; (e) time series of zi; (f) PDF of zi; (g) auto-correlation function of zi;
and (h) return map of zi
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Fig. 2 (a) Example of synthetic signal obtained by combining AR(1) random process (1) and non-linear deterministic process (2) using (b)
control parameter b. Non-overlapping 20 s window analysis of (c) mean m, (d) variance s, (e) power spectral density (arbitrary units),
and (f) auto-correlation function demonstrates that linear statistics fail to detect non-linear deterministic process when b40. In contrast,
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correlations, such as the auto-regressive process of order one
AR(1) (CHATFIELD, 1989)

xiþ1 ¼ axi þ e i ð1Þ

where �15a51; and e i is a normally distributed random,
variable with mean zero and standard deviation one. The
standard deviation of this process is sx ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2

p
, and its

auto-correlation rk is given by rk ¼ ajkj, where k is the time
delay.

The non-linear deterministic system known as the skew-tent
map, given by

yiþ1 ¼

1

a
yi 04 yi 4 a

1 � yi
1 � a

a4 yi 4 1

8><
>: ð2Þ

is a non-invertible transformation of the unit interval into itself,
with the parameter a chosen to satisfy 05a51, and its invariant
measure is uniform on the unit interval. This dynamical system is
chaotic, with Lyapunov exponent L ¼ �a log2ðaÞ � ð1 � aÞ
log2ð1 � aÞ.

If the parameter values of these two systems are chosen
such that a ¼ 2a� 1, then both systems will have identical
power spectra (SMITH, 1997). To enhance the similarity
between these two systems, a measurement function zi ¼
hðyiÞ can be used to transform the output of the skew-tent
map yi, so that the probability density function (PDF) of zi is
also normally distributed with mean zero and standard devia-
tion sx, as in the case of the AR(1) process. The required
measurement function is

zi ¼

ffiffiffi
2

p

sx
F 2 yi �

1

2

� �� 	
ð3Þ

where F is the inverse error function (PRESS et al., 1992).
This means, of course, that the auto-correlation functions of xi
and zi will differ somewhat, although those of xi and yi are
identical.

Fig. 1 contrasts the statistical properties of xi and zi for
a ¼ 0:95. Although the two time series look different to the
eye, their PDFs are identical, and their auto-correlation func-
tions are similar (some disparity is introduced as the measure-
ment function (3) is non-linear). The difference in the
underlying dynamical equations is best seen by investigating
their return maps (also known as delay reconstructions), as
shown in Figs 1d and h. These two-dimensional delay
reconstructions are able to resolve the dynamics underlying
both systems given by (1) and (2). The difference between the
multi-dimensional distributions displayed in the state space
(see Figs 1d and f ) is utilised to develop a technique for
detecting dynamical changes in Section 2.5. Note that linear
statistics, such as variance, the auto-correlation function and
indeed any quantity defined with respect to the power spec-
trum, fail to distinguish between the two systems illustrated in
Fig. 1.
450
A synthetic signal si is defined as the linear combination of the
random process xi and the non-linear deterministic process zi

si ¼
ffiffiffiffi
bi

p
zi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � bi

p
xi ð4Þ

where bi controls the amount of non-linear deterministic struc-
ture in si. This combination ensures that, if both xi and zi have
standard deviation sx, then that of si is also sx. Furthermore, as
both xi and zi are mean zero, si is also mean zero. Note that
bi ¼ 1 gives the purely non-linear deterministic signal zi,
whereas bi ¼ 0 yields the random linear process xi, which is
devoid of any non-linear structure.

By analogy to the claims (LEHNERTZ and ELGER, 1998;
MARTINERIE et al., 1998) that epileptic seizures are associated
with low-dimensional non-linear processes, bi ¼ 1 is chosen to
correspond to the seizure period of the synthetic signal. A non-
seizure state is defined by bi ¼ 0, and the pre-seizure and post-
seizure states are both given by bi 2 ½0; 1 
. Figs 2a and b
illustrate the synthetic signal si obtained for a given control
parameter bi.

2.2 EEG recordings

The multi-electrode scalp EEG signals analysed in this paper
were recorded at the National Hospital for Neurology and
Neurosurgery, London (MCGROGAN, 2001). A sample rate of
200 Hz was used to record 20 channels with positions shown in
Fig. 3. The data were recorded with 12-bit resolution. A modified
10–20 system was used that omits the Pz position but includes
two additional electrodes. Seizure onset times were marked by
experienced technicians, and the seizures lasted for at least 40 s,
apart from recording F=1, for which the seizure lasted for 24 s.
All seizures are classified as generalised seizures, implying that
activity related to the seizure should be present in every channel.

A1
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T4C4CzC3
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T3
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Fig. 3 Spatial geometry of 10–20 electrode system
Table 1 Channel numbering and naming convention of 10–20 system: prefrontal (Fp), frontal (F), central (C), temporal (T), parietal (P),
occipital (O) and ear or mastoid (A)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fp2 F8 T4 T6 O2 Fp1 F7 T3 T5 O1 F4 Fz F3 C4 Cz C3 P4 P3 A1 A2
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The database contains eight seizures recorded from six different
patients. Table 1 shows the correspondence between the elec-
trodes and the channel numbering convention of the 10–20
system.

2.3 Linear analysis

2.3.1 Variance: One of the simplest linear statistics that can
be used for investigating the dynamics underlying the EEG
is the variance of the signal calculated in consecutive non-
overlapping windows. Let si denote the EEG signal at time i.
The variance of this EEG signal is given by

s2 ¼ h½si � m
2 
i ð5Þ

where the mean is m ¼ hsii, and h
i is the average taken over the
time interval being considered.

ESTELLER et al. (1999) suggest measuring the energy (simply,
the sum of s2

i without removal of the mean) of the signal in
consecutive windows of the EEG signal. For the recordings
investigated in this paper, the means do not vary significantly,
and therefore the results obtained using variance are equivalent
to those using energy.

The F-test (PRESS et al., 1992) provides a statistical test of
the hypothesis that two given data sets have different
variances. The F statistic is the ratio of one variance to the
other, so that F41 and F51 both indicate significant
differences. The probability that F would be as large as it is
if the first data set’s underlying distribution actually has
smaller variance than the second is given by p ¼ QðFjn1; n2Þ

where n1 and n2 are the number of degrees of freedom in the
first and second data sets, respectively. This probability can be
computed using QðFjn1; n2Þ ¼ In2=ðn2þn1FÞ

ðn2=2; n1=2Þ, where
Ixða; bÞ is the incomplete beta function. Note that the negative
logarithm of the probability g ¼ � log10 p was calculated using
log co-ordinates to compute Ixða; bÞ, to avoid problems with
computer precision.

2.3.2 Power spectrum: A popular approach for investigating
the EEG signal is to utilise its power spectrum (BLANCO et al.,
1995). There are a number of different statistics that aim to
summarise the information contained in the power spectrum.
These include calculation of the total integral of the power
spectrum over all non-zero frequencies (note that this equals
the variance of the signal) and the median frequency, which
estimates the ‘typical’ frequency present in the signal
(WIDMAN et al., 2000). It has also been postulated that
rhythmic behaviour, characterised by a peak in the power
spectrum at a specific frequency, can be used to identify
epileptic seizures (MURRO, 1991).

2.3.3 Auto-correlation function: The auto-correlation func-
tion rk of a process si is given by (CHATFIELD, 1989)

rk ¼
h½si � m
½siþk � m
i

s2
ð6Þ

where k is the time lag. rk quantifies the amount of linear
correlation between the signal and itself shifted by a time lag k.
This function satisfies r0 ¼ 1; values of rk � 1 reflect
strong linear correlations; rk � �1 implies strong linear anti-
correlations; and rk � 0 indicates that no linear correlations
exist.
Medical & Biological Engineering & Computing 2002, Vol. 40
2.4 Non-linear analysis

The non-linear analysis of data recorded from an experi-
mental system usually begins with a state space reconstruction.
An advantage of obtaining a multi-dimensional state space is
that it may reveal the underlying dynamics, as demonstrated in
Figs 1d and h. One method for obtaining such a reconstruction
is to employ delays of the EEG signal recorded at a single
electrode.

A delay vector reconstruction (PACKARD et al., 1980;
TAKENS, 1981; SAUER et al., 1991) of the signal si is defined by

xi ¼ ½si�ðm�1Þt; . . . ; si�t; si
 ð7Þ

where m is the reconstruction dimension, and t is the time delay.
In the results presented here, m ¼ 2, and t was chosen using the
geometrical approach introduced in ROSENSTEIN et al. (1994).
Note that, in the case of the processes given by (1) and (2), these
equations imply that m ¼ 2 and t ¼ 1 yield a suitable recon-
struction of the state space.

Over the last decade, a plethora of papers have been
published claiming that low-dimensional dynamics underly
various complex systems. The correlation dimension D2

(GRASSBERGER and PROCACCIA, 1983) provides a measure of
the complexity of the fractal geometry sculpted by the observa-
tions in the reconstructed state space. A number of papers have
warned of the difficulties in estimating D2 and have demon-
strated that vast amounts of data are required for even the
simplest dynamical systems (SMITH, 1988; ECKMANN and
RUELLE, 1992). This difficulty is exacerbated by the fact that
real-world systems are invariably contaminated by measurement
noise and that the processes underlying the EEG may be non-
stationary.

The requirement for long data sets implies that the dimen-
sion estimators will not converge to a meaningful estimate of
D2 for short windows of EEG data. Hence, D2 is a rather blunt
instrument for detecting changes in the dynamics over time.
LEHNERTZ and ELGER (1998) have calculated an effective
correlation dimension in a non-overlapping window of 20 s
and claim that a significant decrease in this dimension occurs
prior to and during seizure for most subjects. Note that D2

may still be a useful statistic, just not a good dimension
estimate.

A number of other non-linear statistics have been used
to investigate changes in the EEG: correlation density
(LERNER, 1996; MARTINERIE et al., 1998), cross-correlation
integral (LE VAN QUYEN et al., 1999; 2000; 2001), Lyapunov
exponents (IASEMIDIS and SACKELLARES, 1996; IASEMIDIS

et al., 1999; SACKELLARES et al., 2000), similarity measures
(HIVELY, 1999) and non-linear predictability (BLINOWSKA and
MALINOWSKI, 1991; HERNÁ NDEZ et al., 1995; CASDAGLI et al.,
1996; 1997; CASDAGLI, 1997). The fundamental link between
all these non-linear statistics is that they are defined with
respect to a particular state space. If the distribution of points
in this state space varies, then these statistics are likely to
change. The new technique presented in the following Section
directly quantifies changes within this state space.

2.5 Multi-dimensional PDF evolution

The multi-dimensional probability evolution (MDPE) tech-
nique provides a method for detecting changes in the trajectories
woven by the EEG signal as it evolves throughout the
reconstructed state space. The idea is simply to measure how
often different regions of state space are visited while the EEG
displays non-seizure activity. By monitoring how often the
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trajectory visits different parts of the state space, the MDPE
technique is capable of detecting changes in the underlying
dynamics.

A reference set A, representing non-seizure activity, is
constructed from the state vectors recorded during the learning
period. By choosing Nc centres j i (i ¼ 1; . . . ;Nc) in the state
452 M
space, it is possible to define a partition of the state space such
that each point x in the reference set A is a member of partition
Bi if

kx � xik5min
j6¼i

kx � xjk ð8Þ
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Fig. 4 Multi-channel scalp recordings for A=1. Leftmost shaded region shows non-seizure state used as reference dynamics, whereas seizure is
indicated by rightmost shaded region. All voltage amplitudes are scaled by an equal amount
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Each label specifies patient (A–G) and recording number for that patient. Learning and seizure periods are illustrated by leftmost and
rightmost shaded regions, respectively. Vertical axes have logarithmic scale ranging between minimum and maximum variances
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The centres were chosen uniformly from the distribution
obtained by the trajectories in the learning period (SMITH,
1992). A value of Nc ¼ 100 was employed in the results
presented in Section 3. Counting the number of points n0

i

in each of the Nc partitions yields a discrete distribution for
the reference set A. Similarly, for any given window of the
recording, it is possible to calculate its distribution ni in the state
space.

A w2-test (PRESS et al., 1992) can be used to compare the
distribution ni with that of the reference set n0

i . Suppose that
the total number of points in the reference set and the window are
N0 and N, respectively. The w2-statistic is

w2 ¼
XN
i¼1

½rn0
i � ð1=rÞni


2

n0
i þ ni

ð9Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N=N0

p
. Note that w2 is zero if both distributions

have equal numbers in each partition. In the case of both time
series having different numbers of points, the number of degrees
of freedom is n ¼ Nc. The w2 probability distribution
p ¼ Qðw2jnÞ, an incomplete gamma function, gives the prob-
ability of observing values greater than w2 under the null
hypothesis that the data sets are drawn from the same distribu-
tion (PRESS et al., 1992). In other words, a small value of p
indicates that there is a significant difference between the two
distributions. The negative logarithm of the probability,
g ¼ � log10 p, was calculated to avoid problems with computer
precision.

3 Results

The variation in the statistics is now investigated for both the
synthetic signal and the real scalp EEG recordings.

3.1 Synthetic data

The invisibility of the dynamical changes induced by
blending in the non-linear deterministic process in the
synthetic signal are demonstrated for the linear statistics in
this Section. Figs 2a and b show the synthetic signal si and the
associated control parameter bi. A moving window analysis of
the mean, variance, power spectrum and auto-correlation
function are shown in Figs 2c–f ; none of these linear statistics
is capable of detecting the changes due to the non-linear
correlations. In contrast, Fig. 2g demonstrates the probability
that the multi-dimensional PDF has not changed from that
computed within the learning period (first 100 s). Low prob-
abilities (high values of g) reflect excursions into new or rarely
visited regions of state space. Such excursions reflect
abnormal behaviour with respect to the learning data set,
and the shape of the MDPE parameter g between �200 and
200 s reveals (Fig. 2g) very clearly the dynamical changes
introduced by the non-linear deterministic process when
bi 6¼ 0 (Fig. 2b).

3.2 EEG recordings

The scalp EEG recordings contain noise and artifacts,
unlike the clean synthetic signal, and this suggests that, even
if non-linearities were active in the underlying dynamics
associated with the seizure, it may be more difficult to
distinguish them from these artifacts. In addition, the duration
454 M
of the EEG recording that is available before the onset of the
seizure ranges between 250 and 450 s. This limits the use of
out-of-sample tests. Without being further away from the onset
of the seizure, it is not obvious whether any part of the
recording available before the seizure represents non-seizure
activity.

Doubling the duration of the learning set did not signifi-
cantly improve the results. The duration of the learning set
was fixed at 100 s because, as the size of the learning set is
increased, more pre-seizure data are introduced, thus possibly
including activity relating to the seizure onset. Also note
that the size of the learning set should be limited by the
need to assess the technique on out-of-sample data prior to the
seizure.

Fig. 4 shows the multi-electrode activity for patient A=1. The
voltage amplitudes are scaled by an equal amount, so that the
amount of activity recorded at each electrode can be visualised.
There is a large increase in the variance at each electrode during
and after the seizure. Almost any statistic, including ‘non-linear
statistics’, is likely to detect this change in variance. The
important question is whether or not there is anything other
than an increase in variance taking place in this recording around
the time of the seizure.

Fig. 5 illustrates the spatio-temporal changes in variance for
each of the eight scalp recordings from six patients. The first
number of the label is the patient index, and the second is the
recording index. In each panel, the lines denote the variance,
computed over non-overlapping 20 s windows for four of the
electrodes, F3, F4, P3 and P4, which are evenly distributed about
the centre of the skull (broken line), and the variance averaged
over all 20 channels (solid line). The rightmost shaded region
on each panel denotes the time period that clinicians have
marked as containing the epileptic seizure for that particular
recording. The leftmost shaded region on each panel,
containing the first 100 s of each recording, is used as a learning
set. These results demonstrate that the variance usually
increases just after the onset of the seizure. Variance provides
a benchmark with which other statistics can be compared. If a
non-linear statistic cannot outperform a simple linear statistic
such as variance, then there is no reason to advocate complex
non-linear statistics.

This increase in variance is associated with a number of
different changes in the power spectrum (and thus the auto-
correlation function), as shown in more detail for patient A=1 in
Fig. 6. In particular, note the rhythmicity (periodic activity)
associated with an increase in power concentrated at a frequency
that varies between 2 and 4 Hz during the 150 s that follow the
seizure. This rhythmicity was displayed in only five out of the
20 channels. Some traces of rhythmicity were also found in
patients B=1, E=1 and E=2. Without having access to a large
population of patients, it is difficult to say whether or not
rhythmicity is a hallmark of epileptic seizures. Furthermore,
rhythmicity may be associated with some classes of seizure and
not with others.

Fig. 7 shows the results of applying the F-test to the
learning data and 20 s windows of data throughout the
recording. This analysis was carried out separately for each
electrode for each of the eight EEG recordings. The grey-
scale colour bar indicates the significance as defined in
Section 2.3. The results for four particular electrodes (F3,
F4, P3 and P4) are shown separately in Fig. 8. Variance seems
to be capable of detecting the seizures to within 100 s of the
markings.

A leave-one-out approach was used to obtain five out-of-
sample values for g in the learning set. These values provide
information about the amount of variability in g due to non-
seizure activity. Given that there are only five values of g
representing the learning set, under ideal conditions and the
edical & Biological Engineering & Computing 2002, Vol. 40



104

103

102

v
a
ri

a
n

c
e

–300 –200 –100 0 100 200

a

6

4

2 lo
g

1
0

P

0

–2

–4

lo
g

1
0

S

1.0

0.5

0

A
C

F

–300 –200 –100 0 100 200

b

–300 –200 –100 0 100 200

c

–300 –200 –100 0 100 200

d

time, s

20

10

0

f,
H

z

20

10

0

f,
H

z

1.0

0.5

0

�
,
s

Fig. 6 Analysis of EEG signal from channel 13 or F3 of recording A=1: (a) variance; (b) power spectral density P; (c) normalised power spectral
density S (total power is same in each window); and (d) auto-correlation function. Two vertical lines indicate duration of seizure.
Windows of 20 s with overlap of 17.5 s were used
assumption that these values are independent, the probability
of observing a value greater than the largest of these is
approximately 20%. A broken line is used to indicate the
threshold given by the maximum value of g for the learning set
in Fig. 8.

The MDPE technique was also applied to non-overlapping
20 s windows of the EEG recordings, as shown in Figs 9 and 10.
A broken line indicates the threshold corresponding to the
maximum value of g for the learning set in Fig. 10. Delay
reconstructions given by (7), with m ¼ 2 and t calculated using
ROSENSTEIN et al. (1994) (see Table 2) were employed. Note
that, although there is little variation between the delays chosen
for different electrodes, the delays tend to vary quite a lot from
one recording to the next. The overall results are very similar to
those yielded by the variance analysis in Figs 7 and 8. Note,
however, that MDPE provides a more accurate identification of
the seizure onset in recordings E=1, E=2 and F=1. In addition,
MDPE produces fewer large values of g (possibly leading to
false positives) in the times between the learning period and the
onset of the seizure. A comparison of Figs 8 and 10 demonstrates
that variance yields possible false warnings in F4 of A=1, P3 of
D=1, F1, F4, P4 of E=1, and F1, F4, P3 of E=2. The MDPE non-
linear statistic may therefore be more robust than variance,
but without investigating more EEG recordings with longer
non-seizure periods, it is too early to say whether this is generally
the case.
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4 Discussion

The occurrence of non-seizure dynamics that were not
observed during the learning period is likely to cause false
positives when the subsequent EEG signals are analysed. This
is true for any technique that aims to construct a model of
normal activity from a fixed learning data set. In previous
publications, where databases of epileptic seizure recordings
have been investigated, learning periods of 250 s (LE VAN

QUYEN et al., 1999), 300 s (LE VAN QUYEN et al., 2000; 2001)
and 400 s (MARTINERIE et al., 1998) have been used. It was
assumed that these learning periods captured adequate repre-
sentations of non-seizure activity: ‘this reference window was
chosen during a state as ‘normal’ as possible, i.e. far from the
seizure, free of artefacts and containing common features of
interictal activity, e.g. isolated spikes’ (LE VAN QUYEN et al.,
2000).

It is useful to expand on this assumption, as it implies that the
learning set contains

(i) no seizure activity
(ii) a complete representation of numerous types of EEG

activity that are non-seizure.

In particular, a suitable learning set should include the
dynamics associated with non-seizure activity, such as muscle
activity and movement artifacts, (when these are detected
independently and excluded from the analysis).
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Fig. 7 Variance analysis of non-overlapping 20 s windows for EEG recordings where vertical axis corresponds to channel number. Grey-scale bar
shows significance of F-test given by g. First pair of vertical lines indicates learning period, and the second pair indicates duration of seizure
Many different statistics, both linear and non-linear have been
suggested in the literature; the evaluation of these is non-trivial
given the limited data available. If enough statistics are
constructed on a given database and evaluated on the same
database, then eventually one statistic will demonstrate apparent
success, and yet it is unlikely that it will generalise to new
recordings. A statistic that requires the setting of a few para-
meters could be tuned to provide remarkable seizure predictions
on a given database, but such in-sample over-fitting yields a
misleading view of the likely success of the statistic in an
operational setting.

Ideally, a test statistic should be able to distinguish between
detecting a ‘rare’ event and detecting an ‘abnormal’ event. An
456
evaluation of the robustness of a statistic against non-seizure
activity is a fundamental requirement for any practical method
that might be used for detecting or predicting epileptic seizures.
A practical technique for seizure detection must be applied to a
wide variety of non-seizure data to quantify the number of false
positives. Without this test, published results fail to provide
sufficient information for clinicians.

Rather than blind application of non-linear statistics, it
makes sense to ask whether or not there is any conceptual
basis for these techniques. If a complicated non-linear statistic
yields superior results and yet there is no explanation for its
success, it is likely that a simpler statistic exists that is just
as good.
Medical & Biological Engineering & Computing 2002, Vol. 40
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Fig. 8 Variance analysis of non-overlapping 20 s windows for four scalp electrodes (F3, F4, P3 and P4). Leftmost shaded region indicates
learning period, whereas rightmost reflects duration of seizure. Time is displayed on horizontal axis, and g from F-test is shown on
vertical axis. (– – –) Maximum g obtained in learning set. Note that vertical axis ranges from 0 to maximum value of g for that particular
panel
For the database investigated here, there was no evidence of
any non-linearities in the dynamics underlying the EEG
associated with the epileptic seizures. The variance displayed
Medical & Biological Engineering & Computing 2002, Vol. 40
clear changes around the time of the seizure, and these may
provide an accurate seizure detection system, although both
muscle activity and movement artifact also increase variance. It
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remains to be seen whether the occurrence of suspected false
warnings is due to pre-seizure activity or simply due to the fact
that the learning period is not long enough to obtain an
accurate model of the dynamics associated with normal
activity.

5 Conclusions

A synthetic signal was constructed by combining a linear
random process and a non-linear deterministic process. As
expected, no linear statistic could be found that was able to
458
detect transitions between these two processes, despite the
difference between their underlying dynamics. In contrast, the
MDPE statistic introduced in this paper is capable of detecting
subtle changes in the underlying state space that are associated
with changes in the dynamical equations used to generate the
synthetic signal.

An F-test was used to compute the significance of the
observed difference between the variances of the recording
during the learning period and that during the testing
window. Similarly, a w2-test was used to obtain the signifi-
cance of the observed differences between the multi-dimen-
sional distributions observed in the state space during these
periods.
Medical & Biological Engineering & Computing 2002, Vol. 40
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A database of scalp EEG recordings was also analysed using
linear statistics and the MDPE statistic. Both MDPE and variance
were able to detect all of the seizures, but the MDPE provided
more accurate detection of the seizure onset in recordings E=1,
E=2 and F=1. There is no clear justification for preferring the
MDPE statistic over variance, except that the former may
Medical & Biological Engineering & Computing 2002, Vol. 40
generate fewer false positives. Evaluating this claim requires
tests on larger databases with longer non-seizure periods. The
availability of more learning data would also allow the MDPE to
build up a more accurate model of non-seizure dynamics. Non-
linear statistics greatly increase the scope of automatic detection,
but their use must be justified on a case-by-case basis.
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Table 2 Time delays for different channels of EEG recorded from each patient

Channel=patient A=1 B=1 C=1 D=1 D=2 E=1 E=2 F=1

1 3 11 5 3 7 4 4 6
2 3 11 5 3 7 4 4 5
3 3 11 3 3 4 3 3 3
4 3 11 6 5 7 4 3 3
5 3 10 6 4 6 3 3 3
6 3 11 5 6 9 4 4 7
7 3 11 5 3 7 4 4 13
8 3 11 6 3 6 3 3 3
9 3 10 6 5 7 4 3 3

10 4 10 6 4 6 3 3 3
11 3 10 5 3 7 4 4 4
12 5 10 5 7 8 4 4 5
13 3 10 5 3 7 3 3 5
14 3 10 5 3 7 4 4 4
15 5 9 5 6 7 4 5 5
16 3 10 5 3 7 4 4 4
17 3 10 5 5 7 4 4 4
18 3 10 4 5 7 4 4 5
19 3 11 6 3 7 4 4 7
20 3 11 5 5 7 3 3 8
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