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Abstract

A new method for coherent estimation of scaling exponents is presented and demonstrated in the context of the c
dimension. The method is based on contrasting the distribution of Takens’ estimators at a given length scale (which is
be Gaussian) with the distribution of those estimators at smaller length scales (which is again Gaussian, but typically h
variance). Requiring consistency with all smaller length scales allows a coherent (that is, internally consistent) estima
correlation dimension. It is not possible, of course, to place (non-trivial) bounds on the true dimension with any finite
The technique is developed and illustrated on sets where the dimension is known a priori. Macroscopic structure of mo
fractal sets is shown to limit the accuracy with which the correlation dimension is known, even for well studied sets
Hénon attractor.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The correlation dimension is one of the set of Ré
dimensions which characterise the scaling proper
of a distribution of points on anM-dimensional spac
[8]. While it is, perhaps, the most frequently estima
dimension, it is not possible to put absolute bounds
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the error of estimation from a finite sample (at lea
not beyond the trivial bounds of zero andM), simply
because we can neither take the limit of vanish
length scales nor consider infinite number of poin
This Letter presents a new approach that allows on
make coherent estimates of the correlation dimens
such estimates are consistent with all the availa
information. This is accomplished by exploiting th
(distributional) properties of the Takens’ estimat
which are well defined at each length scale, and t
imposing a consistency constraint between all len
scales observed.

We first illustrate the technique on sets where
dimension is known a priori and then consider
.
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results for the set corresponding to the original Hén
attractor. Additional options applicable only to tim
series data will be presented elsewhere.

2. The correlation dimension and Takens’
estimator

Consider a set inRM with a probability measureµ.
Given a set of pointsxi (i = 1,2, . . . , n) drawn at
random from this set, the correlation integral is defin
as [3],

(1)C2(r) = lim
n→∞

1

n2

n∑
i,j=1

Θ
(
r − ‖xi − xj‖

)
,

whereΘ(x) is the Heaviside function which is zero fo
a negative argument and one otherwise. The sum g
the number of pairs of points(i, j) whose distance
is less thanr and C2(r) reflects the probability tha
two randomly chosen points are closer thanr. As r

approaches zero, we expect the correlation integra
behave like

(2)C2(r) = Φ(r) · rν,

whereν is the correlation exponent and is equal to
generalised Rényi dimensiond2 [8]. Φ(r) is a function
that reflects the lacunarity of the set [1,10,15].

The Takens’ estimator,T2(r), is based on the
distances between randomly selected points. Ass
that these distances are independent and rand
distributed according to the probability

(3)P(rp < r) = C2(r) = Φ(r) · rν.

The likelihood of observing a pair of points sep
rated by the distancer is thus expressed as a functi
of the parametersν andΦ. AssumingΦ is constant,
the value ofν that maximises the probability of find
ing the observed distancesrp , is given by the Takens
estimator [14],

(4)T2(r) =
[

−1

Np − 1

Np∑
p=1

log

(
rp

r

)]−1

,

whererp are the distances between randomly cho
points which are smaller thanr. In the limit r → 0
and Np → ∞ then T2(r) → d2, assuming this limit
exists. In this caseΦ is constant (or approaches
constant asr → 0) and the Takens’ estimator is
fact optimal [16]. For a discussion of cases where
cunarity cannot be ignored, see [15]. In cases wh
limr→0 Φ(r) is not a constant,T2 usually fails to con-
verge in the same limit. As noted by Borovkova
al. [2], the original Takens’ estimator is in fact bias
but the slight correction (included in Eq. (4)) of repla
ing Np by Np − 1 in the denominator, yields an unb
ased minimum variance estimator.2 In the next section
we give additional details on the estimator itself.

3. Coherent estimation

For finite values ofNp (the number of distances
the distribution of the Takens’ estimator at a giv
length scale is Gaussian with mean equal to�T2(r), and
a standard deviation that increases due to samp
uncertainty asr decreases [12]. Our uncertainty
T2(r) will be smallest at the largest values ofr, yet
the quality ofT2(r) as an estimator ofd2 is greatest
at the smallest values ofr. We thus seek acoherent
estimate ofd2: the estimate ofT2(r

�) and its standard
error wherer� is chosen such thatT2(r

�) is internally
consistent with allT2(r), r < r�.

To illustrate our main result, we consider a s
of points randomly chosen with uniform density
a line segment. Fig. 1 shows 64 different sam
estimatorŝT2(r) with Np = 212 distances. Since w
know the dimension a priori in this case, we use it
illustrate the characteristic behaviors of our approa
The distribution of T̂2 is tightest (small standar
deviation) at large length scales, hence the uncerta
in the estimator is smallest at the least relevant len
scales. In Fig. 1, for example, atr = 2−1 we have

a very precise value of�̂T 2(2−1) of 0.860± 0.004.
Examination of the graph shows that this value can
be taken as coherent in the limitr → 0, as it is not even
consistent withr = 2−3 (�̂T 2(2−3) = 0.969± 0.007).

At the smallest scales where there are, by const
tion, the fewest pairs of points; the distribution ofT2
is often observed not to be Gaussian. This is see
Fig. 1 (for r = 2−10). Intuitively, asT̂2(r) is positive

2 If the difference between 1/Np and 1/(Np − 1) is significant,
then the data set is unlikely to be of interest in terms of dimens
estimation.
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Fig. 1. T̂2 for a line segment of 64 independent realisations e
with 212 distances. The dots show the estimates, and the line�̂T 2(r) and�̂T 2(r) ± 1.96std(T̂2(r)).

definite, if the standard deviation of̂T2(r) approaches

its mean�̂T 2(r), the distribution cannot be symme
ric about �̂T 2(r) (as negative values are not pos
ble) hence it will be skewed and thus not Gauss
We will restrict our attention to those length sca
large enough that the distribution ofT2(r) is arguably
Gaussian. In general, the variance will increase w
decreasingr, as shown in the figure.

The departure from Gaussianity observed at sm
length scales indicates that the Takens’ estimato
not, in fact, BLUE (Best Linear Unbiased Estimato
This has been noted and corrected for by Judd
Our approach generalises immediately to the J
estimator which is BLUE to within the limits state
in [6]. Our approach can also be generalised to m
estimation of other methods coherent, the point of
Letter is to illustrate a coherent Takens’ estimator.

In short, our approach aims to find the largest len
scale (i.e., the one with smallest variance) wh
the sample is arguablyinternally consistent with the
results at all smaller length scales. We then rep
the length scale (where the diameter of the se

normalised to one) and the standard error of�̂T 2 at this
length scale. It is important to note that this does
guarantee the true dimension lies within our repor
standard error, only that our estimate is coherent g
all the available data.

4. Internally consistent estimators

Our goal is to find the largest value ofr, r�, at
which the estimatorT2(r) is internally consistent with
all estimates at smallerri . We call this property coher
ence. There are many ways to define internallyconsis-
tent. Here we will say two estimates are consisten
they arestatistically not distinguishable. This can be
assessed by comparing the sample mean of their
mates. In this case, the 2 samples to be compare
constituted by independent estimators (each one
responding to an independent realization) at differ
length scales. Thus, we test the null hypothesis,

(5)H0: T2(ri) = T2(rj )

against the two-sided alternative hypothesis. This
be done with at-student test. If one cannot rejectH0
at a certain significance level, we will say thatT2(ri)

andT2(rj ) are consistent. If the estimators at the t
smallest length scales available are consistent, one
repeat the same process making all pairwise tests
all length scales until one rejects the hypothesis
any two length scales. In this manner one can find
maximum length scaler� for which all the estimators
at smaller ones are consistent.

It is important to note that all pairwise tests mu
be computed between all length scales and not jus
corresponding to consecutive length scales. This is
to the fact that, ifT2(ri ) is consistent withT2(ri+1) and
T2(ri+1) is consistent withT2(ri+2) (with ri < ri+1 <

ri+2); this does not imply thatT2(ri ) is consistent with
T2(ri+2). For consecutive pairwise tests, failure
reject the null hypothesis (Eq. (5)) will become mo
likely as ri+1/ri → 1. In practice, simply decreasin
the step size in log2(r) (i.e., ri+1/ri ) should not be
able to affect a decision of coherence.

5. Examples

5.1. Line segment

Fig. 2 shows the results for a line segment in gre
detail. The arrow indicates the coherent estima
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Fig. 2. Detail of Fig. 1 showing�̂T 2(r) for a line segment with erro

bars±std(�̂T 2(r)) and±1.96std(�̂T 2(r)).

�̂T 2(2−4) = 0.990± 0.011 found usingt-tests at a
significance level ofα = 0.05. The error bars we

quote are the 1.96× standard errors of�̂T 2(r) which
correspond to a 95% confidence level. Note that at
significance level and with this sample size these
cover the true value of 1.00 (forr�), but the 68% error
bars fail to cover it. Also note that visual inspecti
of Fig. 2 yields immediate identification of where th
result tends to drift away fromd2. Ad hoc tests (such
as the overlap of the 95% level pooled estimator) m
be developed in preference to thet-test.

5.2. Cat map

Next we provide an example where the estimat
of d2 is hampered by macroscopic structure which c
off at a (known) finite length scale. Following [11
we consider the set of points corresponding to de
reconstruction of the cat map in 3D. This set cons
of a series of 11 sheets. When viewed within
Takens’ estimator, this yields variations in̂T2 which
reach values of 2.4 atr = 2−2.25 (see Fig. 3). At length
scales smaller than the separation between the clo
sheets, the estimator converges towards an estima
t
f

Fig. 3. T̂2 for the 3D cat map of 64 independent realisations e
with 224 distances. The dots show the estimates, and the line�̂T 2(r) and�̂T 2(r) ± 1.96std(T̂2(r)).

Fig. 4. Detail of Fig. 3 showing�̂T 2(r) for the cat map with error

bars±std(�̂T 2(r)) and±1.96std(�̂T 2(r)).

2.0, suffering only from the usual edge effects. Fig
shows the estimates using 224 inter-point distances
The t-tests yieldr� = −7.25 and�̂T 2(r

�) = 1.984±
0.011.
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Fig. 5. T̂2 for the 2D Hénon attractor of 64 independent realisati
each with 238 distances. The dots show the estimates, and the
are�̂T 2(r) and�̂T 2(r) ± 1.96std(T̂2(r)).

5.3. Hénon attractor

Figs. 5 and 6 illustrate our method applied to poi
taken from the Hénon attractor. Fig. 5 reveals
expected large scale structure, the precise estimat
T2(r) for r > 2−10 are clearlynot coherent. Applying
the algorithm yields an estimate of 1.214± 0.006
which is coherent forr � −22.5. This is best seen i
the zoom (Fig. 6). Note that while our result atr� =
−22.5 is coherent, the rapid growth in the standa
error at, say,r = 2−22 does not rule out lacunarit
oscillations of the same magnitude as observed
r = 2−12. We stress that coherence is but a neces
condition for meaningful dimension estimates; it
not a sufficient condition. While this estimate diffe
from that quoted by Grassberger et al. [3], it is,
fact, consistent with the uncertainty in the estim
determined by constructing an ensemble of estim
using the method in [4]. Details of both calculatio
will be presented elsewhere.

Unlike traditional methods, the Takens’ estima
requires all interpoint distances to be independen
order to choose independent points in the attra
we used probabilistic sampling of a data strea
Thus, instead of a fixed set of points, a ‘stream’
f

Fig. 6. Detail of Fig. 5 showing�̂T 2(r) for the 2D Hénon attracto

with error bars±std(�̂T 2(r)) and±1.96std(�̂T 2(r)).

points was sampled (pseudo) randomly; pairs w
then drawn from this sample, their interpoint distan
measured and then the points were discarded
further discussion see [12]). This stream of points
obtained by following a trajectory that has reache
stationary state. While the number of points nee
using this approach is greater than those required
a traditional approach, where all interpoint distan
between a fixed set of points are used, the informa
content is also greater.

In order to make statistical comparisons betwe
the estimates at different length scales, the metho
coherent estimation requires a sample of estimate
each length scale. In the examples above, we u
sample with a least 32 members, thus requiring at l
32Np interpoint distances. On the other hand, tra
tional methods such as the Grassberger–Procacc
gorithm [3] only require one sample of interpoint d
tances to estimated2. This drawback is compensate
by the fact that coherent estimation provides statist
error bars which allow us to have a meaningful m
sure of the uncertainty of the estimate ofd2.

Fitting a slope to a logC2(r) vs. log(r) plot, as
in the Grassberger–Procaccia algorithm [3], requ
defining, either implicitly or explicitly, a ‘scaling
range’ [7,11]; the Takens’ estimator avoids this by fi
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considering each length scale on its own merits. I
important, however, to first verify that the data follow

a scaling law and that�̂T 2(r) converges asr → 0.
Internally consistent estimation allows us to determ

whether�̂T 2(r) converges by assessing the equality
estimates at different length scales.

6. Restrictions and necessary conditions

The crucial issue in a test of coherence is the con
tency of the reported estimate with all smaller len
scales. For simplicity, we have adopted at-test, but
other alternatives exist (such as the ANOVA). Wit
out doubt, custom tests can be devised for estima
different statistics. As in most statistical tests, ther
a balance between theoretical exactness and ea
use. The key argument of this Letter is to test the c
sistency of the reported result with that at all sma
scales, not the particular test used to do so.

Some important assumptions have been made w
using thet-test; namely independent and Gaussia
distributed observations and equality in varianc
The Gaussianity assumption is met in this cont
(see Section 3). The observations within a sam
are indeed independent (by construction), but thi
not the case for observations between samples
the estimators come (in this case) from the sa
realisations. Moreover, the assumption of equality
variances is not valid and it is, in fact, an importa
issue that the distributions at different length sca
may have different variances. It is often argued
that, relatively large differences in the populati
variances have relatively small consequences for
conclusions derived from at-test. In addition, in the
case of similar sized length scales, their variances
not be in general very different. Therefore, we can
more trust in the validity of the test in these cas
which is often where the null hypothesis Eq. (5)
rejected.

Making multiple comparisons using the signi
cance levelα in all pairwise comparisons does n
guarantee that the significance level of the overall
is also α. One possibility is to use the Bonferrio
method [5] which sets the level of each test atα/J

(J is the number of samples), or a modification of t
method given by Simes [9].
f

An alternative to carrying out all the
(
J
2

)
differentt-

tests is to use an Analysis of Variance test (ANOV
This test compares the means of multiple samp
Like the t-test, it also assumes that the sample v
ances are equal. In this context the variance incre
asr → 0 so, when using an ANOVA test, distribution
with a whole range of variances will be considered.
the other hand, for pairwiset-tests just two differen
variances are used. Therefore, in this context it m
be more adequate to use pairwise comparisons. N
ertheless, we strongly recommend that both anal
are made and a decision is made based on both re
In fact, for the examples shown here the ANOVA a
t-test are in rough agreement.

When randomly sampling directly from a distri
ution, the distancesrp are indeed independent. Th
is not the case for a time series; when sampling po
from a trajectory there are several things that can ca
the pointsxi, xj to be correlated. Points should b
sampled so as they are not close in time. Otherw
their spatial separation could only reflect their clo
ness in time. It is also advisable to use probabili
uneven sampling as, even ifxi andxj are long sepa
rated in time, the distance|xi − xj | is often correlated
to |xi+1 − xj+1| (see [12]).

The Takens’ estimator relies onT2(r) at small
length scales to estimate the correlation dimens
This can be problematic in the case where nois
present sinceT2(r) is strongly influenced at lengt
scales smaller than the noise level. One poss
way to overcome this problem is by rescaling t
interpoint distances usingln, the maximum possible
noise magnitude [13]. In nearly all practical situatio
however, this quantity is unknown or not know
to sufficient accuracy. In principle, it is possible
develop a maximum likelihood estimators ofd2 and
ln. It has been found by Schouten et al., howev
that the numerical calculation of these estimator
not straightforward. See [13] and references within
different methods that deal with noise corrupted da

The problem of the influence of noise when es
mating d2 using the Takens’ estimator can be ov
come, to a certain extent, given the distributio
properties ofT2(r). In the case where the interpoi
distances are corrupted by noise, the Takens’ e
mator will effectively overestimate the true corre
tion dimension of the uncorrupted attractor. This eff
will be stronger at the smallest length scales. Un
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tunately, these are the length scales we are most i
ested on, as they better approximate the true dimen
of the attractor. As mentioned in previous sections
the absence of noise, the Takens’ estimator is kn
to have a Gaussian distribution. When noise is pres
due to the fact thatT2(r) in overestimated, the distribu
tion will no longer be Gaussian, as it becomes skew
by large positive values and negative values are
possible (T2(r) is positive definite). Thus, the lack o
Gaussianity at these length scales, can be used a
indicator of the presence of noise and these estim
should not be taken on account when obtaining a
herent estimate ofd2.

The departure from Gaussianity was already
countered (Section 3) at the smallest length scales,
to the small number of interpoint distances. As in t
case, it is advised that coherent estimation is restri
to those length scales large enough that the distribu
of T2(r) is Gaussian. Finally, even though the stro
influence of noise is an important drawback of the T
ens’ estimator, coherent estimation does not allow
to have false confidence in the estimate ofd2, by pro-
viding broad error bands that reflect the presenc
noise.

7. Conclusions

We have introduced a method for dimension e
mation that yields coherent statistics. This approac
of interest whenever the underlying statistic is defin
only in the limit, as it provides an estimate which
consistent with measures at all smaller length sca
This is a significant improvement in understanding
timates of correlation dimension, as it provides co
straints on how accurate a given estimate is likely
be. As with all cases where the limit cannot be tak
these estimates are lower bounds on the remaining
certainty. It is the fact that they are sometimes view
as ‘surprisingly large’ that is their strength.

Finally, we note that much of the interest
dimension estimation arises in the context of ti
series observations. In this Letter, we have restric
attention to well-defined sets of points; in the tim
series context, one is often interested in a var
n

of different sets which may be closely related (e
the original attractor, and delay reconstructions
various embedding dimensions). It should be cl
that vast data sets may be required to extract ins
from any dimension algorithm; an advantage of
coherence approach is that it is easily applied
data streams (rather than fixed size data sets).
shifting the analysis to a data stream and continu
the analysis until coherent results are achieved w
small uncertainties, we allow the dynamical system
reveal the data requirements, thereby avoiding ad
generalisations about scaling.
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