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Abstract

A new method for coherent estimation of scaling exponents is presented and demonstrated in the context of the correlation
dimension. The method is based on contrasting the distribution of Takens’ estimators at a given length scale (which is known to
be Gaussian) with the distribution of those estimators at smaller length scales (which is again Gaussian, but typically has larger
variance). Requiring consistency with all smaller length scales allows a coherent (that is, internally consistent) estimate of the
correlation dimension. It is not possible, of course, to place (non-trivial) bounds on the true dimension with any finite sample.
The technique is developed and illustrated on sets where the dimension is known a priori. Macroscopic structure of more typical
fractal sets is shown to limit the accuracy with which the correlation dimension is known, even for well studied sets like the
Hénon attractor.
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1. Introduction the error of estimation from a finite sample (at least,
not beyond the trivial bounds of zero aMi), simply

The correlation dimension is one of the set of Rényi because we can neither take the limit of vanishing
dimensions which characterise the scaling properties length scales nor consider infinite number of points.
of a distribution of points on an-dimensional space  This Letter presents a new approach that allows one to
[8]. While it is, perhaps, the most frequently estimated Make coherent estimates of the correlation dimension;
dimension, it is not possible to put absolute bounds on such estimates are consistent with all the available

information. This is accomplished by exploiting the
- (distributional) properties of the Takens’ estimator,
" Corresponding author. which are well defined at each length scale, and then
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results for the set corresponding to the original Hénon constant as- — 0) and the Takens' estimator is in

attractor. Additional options applicable only to time fact optimal [16]. For a discussion of cases where la-

series data will be presented elsewhere. cunarity cannot be ignored, see [15]. In cases where
lim,_0®(r) is not a constant]> usually fails to con-
verge in the same limit. As noted by Borovkova et

2. Thecorreation dimension and Takens al. [2], the original Takens’ estimator is in fact biased
estimator but the slight correction (included in Eq. (4)) of replac-
ing N, by N, — 1 in the denominator, yields an unbi-

Consider a set iR with a probability measurg. ased minimum variance estimatan the next section

Given a set of points;; (i =1,2,...,n) drawn at we give additional details on the estimator itself.

random from this set, the correlation integral is defined

as [3],

12 3. Coherent estimation

Cor) = lim = " O(r = Ilxi — x1l), (1)
n—-oon .. .

i,j=1 For finite values ofV, (the number of distances),
where® (x) is the Heaviside function which is zero for ~ the distribution of the Takens’ estimator at a given

a negative argument and one otherwise. The sum gives€ngth scale is Gaussian with mean equa10-), and
the number of pairs of pointg, j) whose distance @ standard deviation that increases due to sampling

is less thar and Co(r) reflects the probability that uncertainty as- decreases [12]. Our uncertainty in

two randomly chosen points are closer thams r To(r) will be smallest at the largest values of yet
approaches zero, we expect the correlation integral to the quality of7>(r) as an estimator of; is greatest
behave like at the smallest values of We thus seek @&oherent
estimate ofl,: the estimate of>(r*) and its standard
Co(r)=®(r)-r", 2 error where* is chosen such thab(r*) is internally

consistent with alll>(r), r < r*.
To illustrate our main result, we consider a set
of points randomly chosen with uniform density on

\ . . a line segment. Fig. 1 shows 64 different sample
The Takens' estimator/y(r), is based on the estimatorsT>(r) with N, = 212 distances. Since we

distances between randomly selected points. Assume ; . s .
know the dimension a priori in this case, we use it to

that these distances are independent and randomlyillustrate the characteristic behaviors of our approach
distributed according to the probability bp '

The distribution of 7% is tightest (small standard
P(rp <r)=Ca(r)=®(r) -r". (3) deviation) at large length scales, hence the uncertainty
o ) ] ) in the estimator is smallest at the least relevant length
The likelihood of observing a pair of points sepa- gcgles. In Fig. 1, for example, at= 2-1 we have

rated by the distanceis thus expressed as a function a very precise value 0?2(2,1) of 0.860 % 0.004.

of the parameters and ®. Assuming® is constant, A f1h hsh hat thi |
the value ofv that maximises the probability of find- Examination of the graph shows that this value cannot
be taken as coherentin the limit> 0, as it is not even

ing the observed distancesg, is given by the Takens’ . . =
9 # 1S glven by consistent with- = 2-3 (7»(2-3) = 0,969+ 0.007).
estimator [14],
At the smallest scales where there are, by construc-

wherev is the correlation exponent and is equal to the
generalised Rényi dimensian [8]. @ (r) is a function
that reflects the lacunarity of the set [1,10,15].

1 % , -1 tion, the fewest pairs of points; the distribution Bf
=y —1 > |Og<—p) ; (4) is often observed not to be Gaussian. This is seen in
P o Fig. 1 (for r = 2710, Intuitively, asT(r) is positive

wherer, are the distances between randomly chosen
points which are smaller than In the limit » — 0 2 |f the difference between/Iv,, and (N, — 1) is significant,

anFj Np — o0 then TZ({’) — dp, assuming this limit then the data set is unlikely to be of interest in terms of dimension
exists. In this casep is constant (or approaches a estimation.
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standard error, only that our estimate is coherent given
all the available data.

35F -

S : 4. Internally consistent estimators
e i

Our goal is to find the largest value of r*, at
which the estimato¥>(r) is internally consistent with
all estimates at smallef. We call this property coher-
ence. There are many ways to define internedhysis-
tent. Here we will say two estimates are consistent if
they aredtatistically not distinguishable. This can be
assessed by comparing the sample mean of their esti-
mates. In this case, the 2 samples to be compared are
constituted by independent estimators (each one cor-
responding to an independent realization) at different
length scales. Thus, we test the null hypothesis,

R Ho: Ta(ri) = Ta(r)) (%)
Fig. 1. T» for a line segment of 64 independent realisations each . . . . .
with 212 distances. The dots show the estimates, and the lines are @dainst the two-sided alternative hypothesis. This can

To(r) andTo(r) & 1.96 std To(r)). be done with a-student test. If one cannot rejekt
at a certain significance level, we will say tH&i(r;)

definite, if the standard deviation 8 (r) approaches and7a(rj) are consistent. !f the estimators at the two
) = o smallest length scales available are consistent, one can
its meanTz(r), the distribution cannot be symmet- o504t the same process making all pairwise tests for
ric about 7'2(r) (as negative values are not possi- g|| length scales until one rejects the hypothesis for
ble) hence it will be skewed and thus not Gaussian. any two length scales. In this manner one can find the
We will restrict our attention to those length scales maximum length scale* for which all the estimators
large enough that the distribution @$(r) is arguably at smaller ones are consistent.
Gaussian. In general, the variance will increase with |t js important to note that all pairwise tests must
decreasing, as shown in the figure. be computed between all length scales and not just the

The departure from Gaussianity observed at small corresponding to consecutive length scales. This is due
length scales indicates that the Takens’ estimator is g the fact that, itT>(r;) is consistent wit(ri 1) and
not, in fact, BLUE (Best Linear Unbiased Estimator). To(ri+1) is consistent Withlo(ri42) (With r; < ris1 <
This has been noted and corrected for by Judd [6]. ri+2); this does notimply thaf(r;) is consistent with
Our approach generalises immediately to the Judd 7, ,). For consecutive pairwise tests, failure to
estimator which is BLUE to within the limits stated reject the null hypothesis (Eg. (5)) will become more

in [6]. Our approach can also be generalised to make jikely asr,,1/r — 1. In practice, simply decreasing
estimation of other methods coherent, the point of this the step size in logr) (i.e., riy+1/ri) should not be

Letter is to illustrate a coherent Takens’ estimator. able to affect a decision of coherence.
In short, our approach aims to find the largest length
scale (i.e., the one with smallest variance) where
the sample is arguabliyternally consistent with the 5. Examples
results at all smaller length scales. We then report
the length scale (where the diameter of the set is 51, Line segment
normalised to one) and the standard errof“@fat this
length scale. It is important to note that this does not  Fig. 2 shows the results for a line segmentin greater
guarantee the true dimension lies within our reported detail. The arrow indicates the coherent estimator,
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Fig. 2. Detail of Fig. 1 showmgz(r) for a line segment with error
bars+ std(Tz(r)) and+1.96 stcth(r))

T2(27% = 0.990+ 0.011 found using:-tests at a
significance level ofe = 0.05. The error bars we
guote are the .D6x standard errors ofg(r) which
correspond to a 95% confidence level. Note that at this
significance level and with this sample size these do
cover the true value of 1.00 (fer), but the 68% error
bars fail to cover it. Also note that visual inspection
of Fig. 2 yields immediate identification of where the
result tends to drift away from,. Ad hoc tests (such
as the overlap of the 95% level pooled estimator) may
be developed in preference to theest.

5.2. Cat map

Next we provide an example where the estimation
of d is hampered by macroscopic structure which cuts
off at a (known) finite length scale. Following [11],
we consider the set of points corresponding to delay
reconstruction of the cat map in 3D. This set consists
of a series of 11 sheets. When viewed within the
Takens' estimator, this yields variations Trg which
reach values of 2.4 at= 2225 (see Fig. 3). At length
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3.5

Fig. 3. Tz for the 3D cat map of 64 independent realisations each
with 224 distances. The dots show the estimates, and the lines are
To(r) andT o(r) £ 1.96 std To(r)).
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Fig. 4. Detail of Fig. 3 showqu(r) for the cat map with error
bars+ std(Tz(r)) and+1.96 stcth(r))

2.0, suffering only from the usual edge effects. Fig. 4
shows the estimates using“2inter-point distances.

scales smaller than the separation between the closest he ¢-tests yieldr* = —7.25 and To(r*) = 1.984+
sheets, the estimator converges towards an estimate 00.011.
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Fig. 5.T> for the 2D Hénon attractor of 64 independent realisations Fig. 6. Detail of Fig. 5 showinfz(r) for the 2D Hénon attractor
each with 38 distances. The dots show the estimates, and the lines with error barst std(7 »(r)) and+1.96 stdT2(r)).
areTo(r) andT 2(r) £ 1.96 std 7> (r)).

points was sampled (pseudo) randomly; pairs were
5.3. Hénon attractor then drawn from this sample, their interpoint distance

measured and then the points were discarded (for

Figs. 5 and 6 illustrate our method applied to points further discussion see [12]). This stream of points is
taken from the Hénon attractor. Fig. 5 reveals the obtained by following a trajectory that has reached a
expected large scale structure, the precise estimates oftationary state. While the number of points needed
T»(r) for r > 2710 are clearlynot coherent. Applying using this approach is greater than those required by
the algorithm yields an estimate of214+ 0.006 a traditional approach, where all interpoint distances
which is coherent for < —225. This is best seen in  between a fixed set of points are used, the information
the zoom (Fig. 6). Note that while our result/at= content is also greater.
—225 is coherent, the rapid growth in the standard In order to make statistical comparisons between
error at, say; = 2722 does not rule out lacunarity the estimates at different length scales, the method of
oscillations of the same magnitude as observed at coherent estimation requires a sample of estimates at
r = 2712, We stress that coherence is but a necessaryeach length scale. In the examples above, we use a
condition for meaningful dimension estimates; it is sample with a least 32 members, thus requiring at least
not a sufficient condition. While this estimate differs 32N, interpoint distances. On the other hand, tradi-
from that quoted by Grassberger et al. [3], it is, in tional methods such as the Grassberger—Procaccia al-
fact, consistent with the uncertainty in the estimate gorithm [3] only require one sample of interpoint dis-
determined by constructing an ensemble of estimatestances to estimaté. This drawback is compensated
using the method in [4]. Details of both calculations by the fact that coherent estimation provides statistical
will be presented elsewhere. error bars which allow us to have a meaningful mea-
Unlike traditional methods, the Takens’ estimator sure of the uncertainty of the estimatedf

requires all interpoint distances to be independent. In  Fitting a slope to a log2(r) vs. logr) plot, as
order to choose independent points in the attractor in the Grassberger—Procaccia algorithm [3], requires
we used probabilistic sampling of a data stream. defining, either implicitly or explicitly, a ‘scaling
Thus, instead of a fixed set of points, a ‘stream’ of range’[7,11];the Takens’ estimator avoids this by first
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considering each length scale on its own merits. Itis  An alternative to carrying out all th((é) differentz-
important, however, to first verify that the data follows  tests is to use an Analysis of Variance test (ANOVA).

a scaling law and thaffg(r) converges as — O. This test compares the means of multiple samples.
Internally consistent estimation allows us to determine Like thez-test, it also assumes that the sample vari-

whetherT»(r) converges by assessing the equality of 2NCes are equal. In this context the variance increases
estimates at different length scales. asr — 0 so, when using an ANOVA test, distributions

with a whole range of variances will be considered. On
the other hand, for pairwisetests just two different
variances are used. Therefore, in this context it may
be more adequate to use pairwise comparisons. Nev-
ertheless, we strongly recommend that both analysis
The crucial issue in a test of coherence is the consis- are made and a decision is made based on both results.
tency of the reported estimate with all smaller length In fact, for the examples shown here the ANOVA and
scales. For simplicity, we have adopted-test, but t-test are in rough agreement.
other alternatives exist (such as the ANOVA). With- When randomly sampling directly from a distrib-
out doubt, custom tests can be devised for estimating ution, the distances, are indeed independent. This
different statistics. As in most statistical tests, there is is not the case for a time series; when sampling points
a balance between theoretical exactness and ease ofrom a trajectory there are several things that can cause
use. The key argument of this Letter is to test the con- the pointsx;, x; to be correlated. Points should be
sistency of the reported result with that at all smaller sampled so as they are not close in time. Otherwise,
scales, not the particular test used to do so. their spatial separation could only reflect their close-
Some important assumptions have been made whenness in time. It is also advisable to use probabilistic
using ther-test; namely independent and Gaussianly uneven sampling as, evenixf andx; are long sepa-
distributed observations and equality in variances. rated in time, the distande; — x| is often correlated
The Gaussianity assumption is met in this context to |x;+1 —x;+1] (see [12]).
(see Section 3). The observations within a sample  The Takens' estimator relies ofio(r) at small
are indeed independent (by construction), but this is length scales to estimate the correlation dimension.
not the case for observations between samples, asThis can be problematic in the case where noise is
the estimators come (in this case) from the same present sincel>(r) is strongly influenced at length
realisations. Moreover, the assumption of equality of scales smaller than the noise level. One possible
variances is not valid and it is, in fact, an important way to overcome this problem is by rescaling the
issue that the distributions at different length scales interpoint distances using, the maximum possible
may have different variances. It is often argued [5] noise magnitude [13]. In nearly all practical situations,
that, relatively large differences in the population however, this quantity is unknown or not known
variances have relatively small consequences for theto sufficient accuracy. In principle, it is possible to
conclusions derived from atest. In addition, in the  develop a maximum likelihood estimators &f and
case of similar sized length scales, their variances will 1,,. It has been found by Schouten et al., however,
not be in general very different. Therefore, we can put that the numerical calculation of these estimators is
more trust in the validity of the test in these cases; not straightforward. See [13] and references within for
which is often where the null hypothesis Eq. (5) is different methods that deal with noise corrupted data.
rejected. The problem of the influence of noise when esti-
Making multiple comparisons using the signifi- matingd> using the Takens’ estimator can be over-
cance levelx in all pairwise comparisons does not come, to a certain extent, given the distributional
guarantee that the significance level of the overall test properties of7»(r). In the case where the interpoint
is also«a. One possibility is to use the Bonferrioni distances are corrupted by noise, the Takens’ esti-
method [5] which sets the level of each testdt/ mator will effectively overestimate the true correla-
(J is the number of samples), or a modification of this tion dimension of the uncorrupted attractor. This effect
method given by Simes [9]. will be stronger at the smallest length scales. Unfor-

6. Restrictionsand necessary conditions
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tunately, these are the length scales we are most inter-of different sets which may be closely related (e.g.,
ested on, as they better approximate the true dimensionthe original attractor, and delay reconstructions in
of the attractor. As mentioned in previous sections, in various embedding dimensions). It should be clear
the absence of noise, the Takens’ estimator is known that vast data sets may be required to extract insight
to have a Gaussian distribution. When noise is present, from any dimension algorithm; an advantage of the
due to the fact thafx(r) in overestimated, the distribu-  coherence approach is that it is easily applied to
tion will no longer be Gaussian, as it becomes skewed data streams (rather than fixed size data sets). By
by large positive values and negative values are not shifting the analysis to a data stream and continuing
possible {>(r) is positive definite). Thus, the lack of the analysis until coherent results are achieved with
Gaussianity at these length scales, can be used as amsmall uncertainties, we allow the dynamical system to
indicator of the presence of noise and these estimatesreveal the data requirements, thereby avoiding ad hoc

should not be taken on account when obtaining a co-
herent estimate afs.
The departure from Gaussianity was already en-

generalisations about scaling.

countered (Section 3) at the smallest length scales, duea cknowledgements

to the small number of interpoint distances. As in this

case, it is advised that coherent estimation is restricted

to those length scales large enough that the distribution
of T»(r) is Gaussian. Finally, even though the strong
influence of noise is an important drawback of the Tak-
ens’ estimator, coherent estimation does not allow us
to have false confidence in the estimateigfby pro-
viding broad error bands that reflect the presence of
noise.

7. Conclusions

We have introduced a method for dimension esti-
mation that yields coherent statistics. This approach is
of interest whenever the underlying statistic is defined
only in the limit, as it provides an estimate which is
consistent with measures at all smaller length scales.
This is a significant improvement in understanding es-
timates of correlation dimension, as it provides con-
straints on how accurate a given estimate is likely to
be. As with all cases where the limit cannot be taken,

The authors would like to thank the anonymous
reviewers for their suggestions. This work was sup-
ported by a CONACYT grant and ONR DRI grant
N00014-99-1-0056.
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