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ABSTRACT

Uncertainty in the initial condition is one of the factors that limits the utility of single-model-run predictions
of even deterministic nonlinear systems. In practice, an ensemble of initial conditions is often used to generate
forecasts with the dual aims of 1) estimating the reliability of the forecasts and 2) estimating the probability
distribution of the future state of the system. Current rank histogram ensemble verification techniques can only
evaluate scalars drawn from ensembles and associated verification; a new method is presented that allows
verification in high-dimensional spaces, including those of the verifications for 106 dimensional numerical weather
prediction forecasts.

As has long been recognized (Thompson 1957), un-
certainty in the initial condition limits the utility of a
single model run as a forecast of a nonlinear system
like the earth’s atmosphere. If this uncertainty is ac-
cepted, then internal consistency requires that an en-
semble of initial conditions, each consistent with the
observations, be evolved forward under the model. This
note considers not the selection of initial conditions but
rather the evaluation of subsequent forecasts; it presents
a new method of substantially greater applicability than
current methods. We will focus on the property of re-
liability: the property that when a given probability dis-
tribution P has been forecast, the conditional probability
distribution of the verification is equal to P. Methods
for evaluating ensemble reliability (Murphy and Wink-
ler 1987) include those based on rank order statistics;
current implementations are restricted to a single scalar
variable drawn from the forecast state. A generalization
of this approach to higher-dimensional spaces will have
wide application in both the evaluation of physical mod-
els and in forecasting dynamical systems ranging from
low-dimensional chaotic systems to high-dimensional
weather models.
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Ensemble forecasting replaces a single ‘‘best first
guess’’ initial condition with a relatively small ensemble
of initial conditions, each consistent with the observa-
tional uncertainty in the initial state of the system. Clo-
sure problems (Epstein 1969; Leith 1974) prevent an
analytic solution, motivating this Monte Carlo approach.
Methods for selecting these initial conditions date back
to Lorenz (1965), and competing operational approach-
es, evolved from the early 1990s, are used in the Eu-
ropean, American, and Canadian weather forecasting
centers (Molteni et al. 1996; Toth and Kalnay 1993;
Houtekamer et al. 1996). By observing how quickly the
ensemble spreads out (or shrinks), one obtains a local
estimate of the stability of forecasts made in this region
of state space. Global measures like Lyapunov expo-
nents are useless here (Smith et al. 1999), except in the
most simple, uniform systems. Even localized Lyapunov
exponents are misleading (Ziehmann et al. 2000), since
they are based on the linearized dynamics of infinites-
imals, while the ensemble samples the relevant nonli-
nearities. Indeed, chaos places no a priori limits on pre-
dictability: given a perfect model, ensembles exist that
will slowly evolve toward the invariant measure of the
system, but the time scale on which this happens is
independent of the measures used to define chaos, which
are in turn based upon the statistics of infinitesimals
(Oseledec 1968; Smith et al. 1999).

The basic difficulty in evaluating ensemble forecasts
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FIG. 1. An example of a minimum spanning tree. The small dots
are points on the Ikeda attractor. The open circles are ensemble mem-
bers, and the lines connecting them indicate the MST for the L2
norm. The large solid dot is the verification.

stems from the fact that the ensemble forecast represents
a draw from an estimate of a probability density function
(PDF) of forecasts in the model state space (Palmer
2000), while the verification (the true state of the system
at the forecast time or its observation, depending upon
what is available) is a single state.1 Further, since each
forecast is evolved from a different initial state (van den
Dool 1994), the details of the forecast PDF differ for
each forecast.

A standard ensemble reliability evaluation method is
based on the rank order statistic of the forecast (An-
derson 1996; Talagrand et al. 1999; Hamill 2001); after
sketching this method, a generalization to higher-di-
mensional systems based on minimum spanning trees
is presented. The new method is illustrated in a 2-di-
mensional and a 69 173-dimensional example.

Rank-order-statistic-based methods aim to assess
whether ensemble members and the verification are
drawn from the same probability density function. If
this is the case then no statistic can distinguish the ver-
ification from the ensemble members. In particular, if n
scalar forecast values and a (single) verification are ar-
ranged in order of increasing magnitude, the verification
is equally likely to take each position in this rank or-
dering (von Mises 1981), and therefore, the number of
ensemble members smaller than the verification will be
uniformly distributed2 between zero and n; on average,
the verification is equally likely to fall into any of the
n 1 1 ‘‘bins’’ defined by the rank-ordered ensemble
members. The shape of the forecast PDF changes with
each forecast, but for each forecast the probability of
having exactly i ensemble members smaller than the
verification is 1/(n 1 1) for each value of i in (0, 1, 2,
3, . . . , n); hence a histogram constructed by collecting
the rank order of verification over N realizations should
be flat: the expected fraction of members in a bin having
mean 1/(n 1 1) and standard deviation
(1/ ) .ÏN Ï1/(n 1 1)(1 2 1/(n 1 1))

The strength of this approach is that it permits the
examination (and hopefully improvement) of forecasts
of a given variable at a given location, say, 1-day fore-
casts of the temperature in London, United Kingdom.
One cannot, however, evaluate the diagrams from more
than one variable unless the forecast value of each var-
iable is truly independent. While in the long run one
would still hope for each bin to have mean 1/(n 1 1),
there is no general method for assessing what counts as
flat: not knowing the expected standard deviation in the
multivariable case makes it impossible to evaluate the
significance of the results in general, although bootstrap
resampling techniques (Efron and Tibshirani 1993) pro-

1 The authors agree with an anonymous reviewer that ideally one
should assess in observation space (Smith 2003); in practice, veri-
fication in model space is common.

2 The sense of this definition (smaller than the verification versus
larger than the verification) is opposite to that in Smith (2000).

vide a test for necessary conditions.3 In this work we
follow the common practice of calling rank histograms
based on a single scalar value drawn from each ensem-
ble member and verification ‘‘Talagrand diagrams.’’

What is needed is a generalization of the rank or-
dering of a single variable to the higher-dimensional
case (Smith 2000). This letter presents a new approach
based on minimum spanning trees. Given a set of n
points in an m-dimensional space, a spanning tree is a
collection of n 2 1 pairs of points (branches) such that
all points are used at least once. Defining a metric on
the space4 associates with each tree a length, specifically
the sum of the distances of each branch in the tree. The
spanning tree with the smallest length is the minimum
spanning tree (MST). An example is shown in Fig. 1.
MSTs are well known in graph theory and are commonly
used as a method for classification and for network de-
sign. The classic algorithms for constructing MSTs are
found in Kruskal (1956) and Prim (1957).

This MST approach yields rank histograms that can
evaluate ensembles in an m-dimensional space. When
assessing a forecast we have n 1 1 points (n ensemble
members and the verification); let l0 be the length of
the MST constructed using only the ensemble members
(e.g., the MST resulting from only the eight open circles
in Fig. 1), and li be the length of the MST where the
verification is used in place of the ith ensemble member.
Again, if the verification is drawn from the same dis-
tribution as the ensemble members then the number of
times that precisely i trees have length smaller than l0

3 In short, while it is in general never possible to say whether such
a histogram is flat, the bootstrap may allow us to say that it is not
flat.

4 The choice of this metric, or norm, is of critical importance and
will be problem dependent.
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FIG. 2. Minimum spanning tree rank histograms. Ensemble members are always drawn from the Ikeda attractor, while verification differs
for each panel: (a) verification is also drawn from the attractor, (b) verification is drawn randomly from a box in the area of interest, (c)
verification is drawn randomly from a line that is the best linear fit to the local Ikeda attractor structure, and (d) the x component and the
y component of the verification are drawn independently from the Ikeda attractor distribution. The solid horizontal line is the expected mean,
and the horizontal dashed lines are the expected 1 std dev bounds. The vertical lines at the top of the bar in each bin are produced by
bootstrapping (resampling with replacement) from the data that was used to construct the rank histograms. They represent the 99% bound
on expected values.

is a random variable with mean 1/(n 1 1) and standard
deviation (1/ ) . Sup-ÏN Ï1/(n 1 1)(1 2 1/(n 1 1))
pose, for example, that the verification tends to be far
from the ensemble: in this case l0 will tend to be smaller
than the li and the histogram will reflect a systematic
bias (excessive population in the bins of small i). It is
important to point out that the MST rank histogram will
reflect projection effects. Projecting (assimilating) ver-
ifying observations into model space can result in ver-
ifications that are artificially close to ensemble members.
Projecting ensemble members into observation space
can have the corresponding effect.

The behavior of the MST rank histogram method is
demonstrated using the Ikeda (1979) system. Four dif-
ferent scenarios are considered. In each scenario en-
sembles of size n 5 8 are drawn from the correct Ikeda
distribution,5 while four different methods are used to

5 Each ensemble member lies on the Ikeda attractor.

produce the verification. Statistics are collected over
N 5 5000 ensemble realizations and results are dis-
played in Fig. 2. Figure 2a shows the MST rank his-
togram produced when the verifications, like the en-
sembles, are drawn from the Ikeda distribution. For
each of the N realizations, a location on the Ikeda at-
tractor is chosen at random, and ensemble members
and verification are chosen from points on the attractor
that are within an e-sided box centered at that location.
For the results shown here, e 5 10% the size of the
Ikeda attractor. In this scenario it is expected that each
histogram bin will have a value of 1/(n 1 1) 5 1/9
(given by the solid horizontal line) and a standard
deviation of (1/ ) 5ÏN Ï1/(n 1 1)(1 2 1/(n 1 1))
(1/ ) (given by the dashed hor-Ï5000 Ï(1/9)(1 2 1/9)
izontal lines), values that are consistent with the results
shown in Fig. 2a. The vertical lines centered at the top
of the bar in each bin are the result of a bootstrap
uncertainty estimate (Efron and Tibshirani 1993). They
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are produced by resampling (with replacement) from
the N realizations used to generate the MST rank his-
tograms and recording the MST rank histograms that
result for a number of different resamplings. The bars
represent the nonparametric 99% confidence bound on
expected values. The extent to which the bars do not
overlap the expected mean (the solid horizontal line)
provides information about the extent to which the his-
togram is not flat.

Figure 2b shows the MST rank histogram for the case
where verification is drawn randomly from within each
e box. Because points on the Ikeda attractor are not
uniformly distributed in such a box, verification will,
on average, lie far from any generated ensemble and
one would thus expect l0 values to tend to lie below li

values, as is seen in Fig. 2b. In Fig. 2c verification is
restricted to lie on a line that represents a linear fit to
points lying on the Ikeda attractor in the domain of
interest. Again the MST rank histogram reveals the fact
that the verification is not drawn from the same distri-
bution as the ensemble: the MST rank histogram is not
flat, with bootstrap results for two of the bins having
no overlap with the expected mean. Finally, in Fig. 2d
results are shown for the case when verification’s x com-
ponent is drawn from the correct Ikeda x distribution
and the verification’s y component is drawn from the
correct Ikeda y distribution but is independent of the x
component selected. The componentwise distributions
used to construct the ensembles are the same as those
used to construct the verifications, so Talagrand dia-
grams constructed for each component would each yield
uniform distributions. But the histogram in Fig. 2d is
not uniform, again highlighting the strength of the mul-
tidimensional MST rank histogram approach. The MST
rank histogram is able to discern that the two-dimen-
sional distribution used to construct the verification dif-
fers from the two-dimensional distribution used to con-
struct the ensembles. The nonuniform nature of Figs.
2b–d is accentuated for larger ensemble sizes (results
not shown).

MST rank histograms also suggest a simple method
for comparing the quality of a collection of ensemble
prediction systems (EPSs). For each EPS, consider the
distribution of the bin populations, in particular the dis-
tance of the relative frequency of each bin minus the
expected value, measured in terms of the number of
standard deviations it is from the expected value. Plot-
ting the cumulative distribution function (CDF) of this
distribution for each EPS roughly indicates how the
EPSs compare: methods that fall consistently to the left
(close to the expected values) are preferred. The ap-
proach is illustrated in Fig. 3 for the EPSs used in Fig.
2. The thick black line is for verification drawn from
the Ikeda attractor (Fig. 2a), the thin black line is for
verification drawn randomly from a box (Fig. 2b), the
thick dashed line is for verification drawn from a line
(Fig. 2c), and the thick dash–dot line is for verification
drawn independently from the correct x and y distri-

butions (Fig. 2d). The thin gray lines indicate the results
from 1000 realizations of random draws from a known
Gaussian distribution. Note that the rank ordering of the
EPSs is for verifications drawn 1) from the attractor, 2)
from a line, 3) from x and y independently from the
correct distributions, and 4) randomly.

Simply summing the rank histograms from many grid
points (e.g., 500-hPa height at a number of locations
around the Northern Hemisphere) yields a histogram
that is difficult to interpret. It is tempting to try to extend
the Talagrand diagram concept to multiple dimensions
by empirically identifying independent state space di-
rections [e.g., by using empirical orthogonal functions
(EOFs)] and summing the Talagrand diagrams that result
from projecting onto these directions. But in nonlinear
systems EOFs are not independent, and Talagrand di-
agrams summed over EOFs suffer from the same lim-
itations as Talagrand diagrams summed over model grid
points. In the meteorological and oceanographic con-
text, relevant EOF patterns might include the Arctic
Oscillation pattern, the El Niño–Southern Oscillation
pattern, and the Pacific–North America pattern. As-
sessing the Talagrand diagram for any one of these pat-
terns is well defined, but the interdependence of the
physical processes that drive these patterns makes it
unclear how to interpret the collection of Talagrand di-
agrams defined by each pattern. The MST rank histo-
gram does not suffer from these limitations. An MST
can be constructed in EOF space just as easily as in
model space. And one need not be limited to analysis
in EOF space. Any scale decomposition can be used to
address questions like, At what scale do the ensemble
forecasts appear reliable?

An MST diagram is easily constructed for the ensem-
ble output from operational NWP centers. Figure 4 plots
the Talagrand diagram (top), the sum of 108 Talagrand
diagrams (middle), and the MST rank histograms (bot-
tom) for 196 European Centre for Medium-Range
Weather Forecasts (ECMWF) ensemble forecasts of
Northern Hemisphere 500-hPa height fields scattered
through 2001. There are 51 ensemble members for fore-
cast lead times of 0 days (first column), 1 day (second
column), 5 days (third column), and 10 days (last col-
umn). The solid horizontal lines are the expected value
for each bin based on the ensemble size, and the dashed
lines are the expected standard deviation of each bin
based on the ensemble size and the number of samples.
Note that the standard deviation lines are not included
in the summed Talagrand diagrams (middle row) be-
cause they are meaningless in this context. Based on the
Talagrand diagrams on the top row the ensemble appears
reliable, at least at the longer lead times. Simply sum-
ming the Talagrand diagrams from points distributed
every 108 longitude on latitude rings of 308, 458, and
608 North yields the familiar ‘‘nonflat’’ patterns. These
look far from flat, but because spatial correlations in the
error fields are expected, the histograms cannot be in-
terpreted as if based on independent events (each con-
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FIG. 3. Cumulative distribution function of departures from expected bin values normalized by expected
std dev for the MST rank histograms in Fig. 2. The thick solid line is for verification drawn from the attractor,
the thin solid line is for a randomly selected verification, the thick dashed line is for verification drawn from
a line, and the thick dash–dot line is for x and y drawn independently from the correct distributions. The
collection of thin gray lines are from 1000 realizations of random draws from a Gaussian distribution with
mean zero and std dev 1.

tains 108 increments for every forecast). Thus the as-
sumptions used above to define ‘‘flat’’ are violated, mak-
ing it difficult to interpret this diagram when evaluating
(or contrasting) ensemble forecast systems.

The MST rank histograms (bottom) are constructed
in the full 69 173-dimensional space of the 500-hPa
height field. It is apparent at 24 h that the ensembles
are not reliable, and the reliability decreases with fore-
cast lead. By 10 days one can see that verification sys-
tematically lies far from the ensemble members (the
leftmost bins are overpopulated). Similar analysis has
been performed on ensemble output from the Medium-
Range Forecasting (MRF) model of the National Cen-
ters for Environmental Prediction (NCEP), and the Na-
tional Center for Atmospheric Research (NCAR) Com-
munity Climate Model Version 3 (CCM3) with quali-
tatively similar results.

MST diagrams have application beyond ensemble as-
sessment; they also provide a robust framework for the
comparison of multidimensional distributions. Consider
a long climate model run. A basis is defined based, say,
on EOFs, and each January mean model state is pro-
jected onto each basis direction. Similarly, each ob-
served January is projected onto the EOF same basis,

thereby providing two high-dimensional distributions.
The MST rank histogram approach can be used to de-
termine the level at which observed January mean states
are consistent with the model distribution as the number
of EOFs (i.e., the dimension of the space) is increased.

While we hope the MST will prove a useful tool, we
note that its strength in theory will prove some limi-
tations in practice. Only in cases where both the model
and the ensemble are perfect6 can one expect to produce
perfectly reliable ensemble forecasts (e.g., 30% prob-
ability events are observed to verify with a relative fre-
quency of 0.3).

By design, the MST will detect instances where the
verification is not drawn from the same distribution as
the ensemble (hence the requirement of a perfect en-
semble) or instances where the ensemble is not evolved
under a perfect model. Current operational ensemble
formation schemes were not designed to meet this goal
and no model of a physical dynamic system is perfect.

While we can aim to improve our ensembles, and
work using ensemble-based approaches to data assim-

6 A perfect ensemble is one that is drawn from the same conditional
distribution as the verification (Smith 1995).
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FIG. 4. (top) Talagrand diagrams, (middle) summed Talagrand diagrams from 108 locations, and (bottom)
MST rank histograms for the ECMWF EPS for Northern Hemisphere 500-hPa height fields. Note that for
the given sample size, one cannot say that the ensemble forecasts are unreliable when using the Talagrand
diagram. Ensemble forecasts from the summed Talagrand diagrams have overpopulated end bins, but because
of spatial correlations in the forecast error fields the histograms cannot be interpreted as if they were based
on independent events. The MST rank histograms contain as many realizations as the Talagrand diagrams,
yet the unreliability of the ensemble forecasts is evident after only 24 h. For convenience, the y axes for
the MST rank histograms have been limited to 0.3 even though bin values exceed that level for the analyses
and the 24-h forecasts.

ilation already show progress in the direction (Hansen
2002), we cannot require perfect MST diagrams from
imperfect models any more than we can require perfect
point forecasts from uncertain initial conditions. To do
so would abuse the MST in a way not dissimilar to the
way root-mean-square error statistics have been misused
to overtune models in the past.

That said, the MST diagrams can provide a useful
tool with wide application in the imperfect model con-
text, both in terms of evaluating ensemble forecasts and
in comparing distributions in high-dimension spaces. It
should allow the improvement of probability forecasts.
Fortunately, increasing the utility of a probability fore-
cast does not require perfection, but merely that it prove
more useful in application.
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