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Abstract

Operational weather forecasts now allow two week probabilistic forecasts of wave height. This

paper discusses methods for generating such forecasts from numerical model output from the

European Centre for Medium Range Weather Forecasting Ensemble Prediction System. The

ECMWF system produces Monte Carlo style forecasts of wave statistics out to a lead time of 10

days. This ensemble of forecasts is designed to reflect uncertainty in current global weather

conditions. In this paper a method for post-processing the ensemble forecasts of wave statistics is

described and demonstrated using the significant wave height forecasts for four locations of interest

to the offshore industry. The post-processing results in ensemble forecasts which have improved

reliability, and which are better predictors of the expected error in the forecast.
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1. Introduction

Wave forecasting is now an integral part of operational weather forecasting at several

weather forecasting centres (Bidlot and Holt, 1999). The incorporation of wave models
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into numerical weather prediction models can improve atmospheric forecasts by allowing

the transfer of momentum between the ocean’s surface and the atmosphere to be better

modelled (Saetra and Bidlot, 2002). In addition, the forecasts of the wave fields that are

generated are valuable forecast products in their own right. These wave models model the

evolution of the two-dimensional wave spectra at each gridpoint. The spectra can be used

to provide forecasts of sea state statistics such as significant wave height, swell height and

windsea height, as well as wave direction and predominant wave period. For example,

short to medium range (1–10 days) forecasts of wave conditions can assist ship routing and

the scheduling of offshore operations. The European Centre for Medium Range Weather

Forecasting has further enhanced the potential value of wave forecasting by incorporating

a wave model into their ‘ensemble prediction system’. The ECMWF ensemble prediction

system (EPS) was introduced in the 1990s in an attempt to quantify state-dependent

uncertainty in medium range (3–10 days) forecasts. State-dependent uncertainty refers to

the component of uncertainty that depends upon the current stability conditions in the

atmosphere (Palmer et al., 1994). At present, the ECMWF EPS produces an ensemble of

51 global 10-day forecasts, which are produced daily using a version of the ECMWF

numerical weather prediction model. One forecast in this ensemble is initialized using the

best estimate of the current state of the atmosphere. The remaining 50 are initialized using

initial conditions constructed by perturbing the best estimate, to reflect the uncertainty in

this best estimate, and model its impact on the subsequent forecast. The idea is to provide a

crude Monte Carlo style sample of the likely behaviours of the model. More detailed

discussions of ensemble forecasting at ECMWF can be found in the meteorology literature

(Molteni et al., 1996; Palmer, 2000).

Since the ECMWF wave model is coupled to the atmospheric model, there is a forecast

of the global wave field associated with each member of the ensemble. The wave model

predicts the directional wave spectra at each grid point but only about two dozen summary

statistics are archived (Bidlot, 2001). These statistics include quantities such as significant

wave height, significant swell height and significant height of locally generated wind

waves.

It must be stressed that ensemble forecasting is largely an attempt to model one source

of forecast uncertainty—initial condition error. In recent years, ECMWF have included

‘stochastic physics’ in an attempt to improve the models estimation of other sources of

uncertainty (Buizza et al., 1999) and other researchers have introduced ensembles

consisting of forecasts from different models (Evans et al., 2000). But, regardless of how

the ensembles are constructed, ensemble forecasts generated by numerical modelling

alone can only ever provide a partial description of all the sources of uncertainty that affect

a numerical weather prediction. To provide an assessment of the total uncertainty

associated with a forecast, and indeed to provide a probabilistic forecast suited to decision

making under uncertainty, some type of statistical post-processing of the ensemble

forecast is required. This post-processing will incorporate information about past

verifications and the accuracy of past forecasts.

In this paper, one post-processing technique consisting of linear regression and ‘best

member dressing’ is applied to ECMWF ensemble forecasts of significant wave height at

four locations shown in Fig. 1. The sites selected were Bonga, off the coast of Nigeria,

Maui off New Zealand and the Campos and Santos Basins off the coast of Brazil.



Fig. 1. The locations of the four sites studied in this paper. Offshore oil extraction is underway at these four sites.
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Offshore oil and gas exploration and production is underway in all of these locations and

the skill of wave forecasts for these places is thus of particular interest to the offshore

energy industry. The aim of this paper is to both illustrate the post-processing technique

through an application, and also to demonstrate that, with appropriate post-processing, the

ECMWF ensemble prediction system can provide skillful and reliable probabilistic

forecasts of wave fields at lead times of more than one week.
2. Method

2.1. Forecast regression

Wave forecasts deviate from the subsequent observations due to model imperfec-

tions and uncertainty in the initial conditions. Certain types of model imperfections—

such as systematic biases—can be corrected for by fitting past forecasts to observations

using linear regression. Furthermore, it has been shown that applying a linear

regression to a finite size ensemble leads to better estimates of parameters of the

forecast uncertainty distribution, even in the perfect model case (Leith, 1974). The first

step in the post-processing of ensemble forecasts is thus to apply a linear

transformation of the form

e0t;l;q;i Z mt;l;qet;l;q;i Cct;l;q (1)
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where et,l,q,i is the ith ensemble member of the ensemble forecast made on day t for

lead time l and for quantity q, e0t;l;q;i is the transformed ensemble member and mt,l,q and

ct,l,q are the coefficients obtained by performing a least squares fit between past

ensemble means and past verifications. The ensemble mean of the forecast on day t for

quantity q at lead time l is given by

heit;l;q Z
1

N

XN

iZ1

et;l;q;i (2)

where N is the size of the ensemble. In this paper the ensemble means and verifications from

the two month period immediately preceding day t (making an allowance for the lead time)

were used in the linear regression. The subscripts t and l on the coefficients m and c

emphasize the fact that these coefficients were updated for each forecast, always using the

previous two months, and that each lead time, l, had its own coefficients.

2.2. Dressing

The technique of dressing is an attempt to account for sources of error in the forecast

not accounted for by the way that an ensemble forecast is constructed. Best member

dressing is one way of estimating the distribution that should be used to ‘dress’ the

ensemble. That is, the distribution that should be convolved with the distribution of raw

ensemble members. An outline of the method is given here although a more complete

description can be found in Roulston and Smith (2003).

Let v denote a forecast verification. This could mean the subsequent direct observation

of a predicted quantity, or it could, as in this paper, refer to a subsequent analysis—an

estimation of the current state of the ocean made by assimilating observations into a

model. Given an ensemble of forecasts xi (iZ1,.,N), and having defined a measure of

distance such as root mean square distance, we can define the best member as the ensemble

member which is closest to v. An expression for the probability that v will take on a

particular value can be written

Probðv Z xÞ Z
XN

iZ1

Probðv Z xjxi is bestÞ!Probðxi is bestÞ (3)

where the expression Prob(xi is best) indicates the probability that the ith member is the

best ensemble member. The expression in Eq. (3) is exact, and its exactness does not

actually depend on the precise details of how the best member is defined. If the forecast

contains no information, however, ProbðvZxjxi is bestÞZProbðvZxÞ and so while

Eq. (3) will be true, it would not be useful. If all the ensemble members are exchangeable,

that is there is no a priori reason to believe that one ensemble member is more likely to be

the best member than any other then it is possible to write

Probðxi is bestÞ Z
1

N
(4)

This assumption of exchangeability would not be the case for an ensemble consisting of

forecasts from different models (and is not strictly the case for the so called control
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member of the ECMWF ensemble, since it alone has not been perturbed from the best

estimate of the initial condition). Nevertheless, in the current study the assumption was

made. It is possible to modify the best member approach to exclude this assumption but

this was not done in this study. The second assumption made regarding Eq. (3) is that

Probðv Z xjxi is bestÞ Z rðx KxiÞ (5)

That is, the probability that vZx given that a particular ensemble member is best is a

probability distribution the shape of which is independent of the value of any xi. This

assumption is harder to justify on purely theoretical grounds. Making the assumptions

given in Eqs. (4) and (5) allows Eq. (3) to be rewritten as

Probðv Z xÞz
1

N

XN

iZ1

rðx KxiÞ (6)

The ‘dressing’ distribution, r(3), can be determined by selecting a parametric

distribution, such as a Gaussian, and optimizing the parameters of the distribution using

historical ensemble-verification pairs. This approach was adopted for univariate

temperature forecasts by Smith et al. (2001). An alternative parameter free approach is

to identify r(3) with the ‘best member’ error distribution. This is the distribution of the

error (distance from the verification) on the best member of the ensemble. In this approach

the best member must be identified as such in a high enough dimensional space to avoid

projection effects leading to a misidentification of the best member and subsequent poor

estimation of the best member error distribution (Roulston and Smith, 2003). In practice,

this means that the best member of the ensemble should be identified using multiple

forecast quantities, either in time and/or in space. Roulston and Smith used a method of

‘false best members’ to decide whether a given set of variables is too small, but there is, as

yet, no theory for guiding this variable selection. For example, in this paper the best

member of each ensemble was identified as the one with the lowest total squared error with

respect to the subsequent analysis, where each forecast variable was normalized by its

standard deviation in the ensemble. That is, the best member was defined as the one with

the lowest value of c2 given by

c
2
t;i Z

X

q

X

l

ðvt;l;q Ke0t;l;q;iÞ
2

s2
t;l;q

(7)

where

s2
t;l;q Z

1

N

XN

iZ1

ðe0t;l;q;i K he0it;l;qÞ
2 (8)

Note that the linearly transformed variables defined in Eq. (1) are used in Eqs. (7) and

(8). The three subscripts signify that there is a separate value of s for each forecast, lead

time and forecast variable. The index l represents the lead times and lZ1,.,10. The index

q represents the forecast variables and qZ1,.,8, where the 8 variables that contributed to

the squared error are shown in Table 1. Only the single location for which forecasts were

being produced was used in the process of identifying the best members. When the



Table 1

The wave model variables used to identify the best member of each ensemble forecast.

SWH Significant wave height

PP1D Peak period of 1d spectra

MWP Mean wave period

SHWW Significant height of wind waves

MPWW Mean period of wind waves

SHPS Significant height of swell

MPPS Mean period of swell

WIND 10 m wind speed modified by wave model
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duration of the forecasts is much longer than the forecast lead time of interest, one would

select best members based on a shorter time scale than the full forecast lead time.

Once the best member of each of the past ensembles for which the subsequent analyses

were available had been determined, the errors associated with these members were

calculated by subtracting the value of the best member from the verification (in this case

the analysis). New 51-member ensemble forecasts were then produced using the algorithm

outlined below.
1.
 regress forecast using Eq. (1) with coefficients fitted using forecasts from the past two

months
2.
 select a random member of the regressed ensemble
3.
 select a random best member error from the previous two months
4.
 add the selected error to the selected ensemble member to create a member of the

‘dressed’ ensemble
5.
 repeat steps 2–4 50 more times to create a new 51-member ensemble

Note that in steps 2 and 3 the members of the regressed ensemble and the best member

error are selected with replacement. It should also be noted that for a forecast issued on a

particular day, both the regression and the dressing procedures were performed using only

forecasts from the past two months for which complete verifications were available. That

is, forecasts issued in the period from 60 days before the particular day to 10 days before

the particular day. This point is important because the number of past forecasts required to

implement a post-processing or recalibration method affects its practical value. The

existence of a substantial archive of past forecasts can enhance the value of a forecast

model by allowing better estimates of its error statistics (Smith, 2003). The processed

ensemble was constructed to have 51 members to allow a fair comparison with the raw

ensemble. The processed ensemble could have a larger number of members. With 51

members and a relatively short archive of 50 error samples a processed ensemble with

2550 different members could in principle be constructed.

Fig. 2 shows a comparison of raw 51-member ECMWF ensembles with ‘regressed and

dressed’ 51-member ensembles for significant wave height forecasts made on two

different days for Maui off the coast of New Zealand. Notice that the post-processing tends

to broaden the ensemble. Ideally, of course, the ensemble should be as narrow as possible,

but not so narrow that it is not an accurate indicator of the uncertainty in the forecast.



Fig. 2. An example of the impact of post processing on the raw 51-member ECMWF ensembles of significant

wave height. The panels on the left show unprocessed ensemble forecasts for SWH at Maui for two different days.

The panels on the right show the corresponding regressed and dressed forecasts. The thick black curve is the

corresponding analyses. Notice that post-processing widens the distribution of ensemble members, and in doing

so makes it a better representation of the actual forecast error, although this cannot be properly demonstrated

using individual forecasts.
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2.3. Evaluating ensemble forecasts

When discussing the accuracy of single ‘deterministic’ forecasts1 it is common to use

linear correlation between the forecast and the verification as an indicator of forecast skill.

The skill of the ensemble mean can be evaluated in the same way. If heit is the ensemble

mean of forecast t and vt is the corresponding verification, then the coefficient of linear
1 The word ‘deterministic’ refers to what are also known as ‘point forecasts’. A single prediction, which may

come from a model with ‘stochastic physics’ that might be interpreted as the mean, mode or median of the

uncertainty distribution depending on how it was constructed.
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correlation is given by

r Z

P
tðheit K h �eiÞðvt K �vÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

tðheit K h �eiÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

tðvt K �vÞ2
p (9)

where the overbar indicates averaging over forecasts.

The value of ensembles, however, extends far beyond the skill of the ensemble mean as

a deterministic forecast. Ensembles are designed to provide information about the likely

error in the forecast. One way of assessing this capability is the spread-skill relationship.

There are several variations of how spread and skill are defined in this context but in the

present work the following definitions were used.

SPREADt Z
1

N

XN

iZ1

jet;i K heitj (10)

SKILLt Z jvt K heitj (11)

Examination of Eqs. (10) and (11) shows that the spread is the mean absolute difference

between the ensemble members and the ensemble mean, and the skill is just the absolute

error of the ensemble mean with respect to the subsequent verification. Spread-skill

relationships are sometimes plotted for individual forecasts. This however leads to a large

amount of scatter in the relationship, even in the case of perfect ensembles, because a

single realization of the actual error of a forecast is a poor estimate of the expected error

associated with the distribution. It can be shown that, even in the case of perfect normally

distributed ensembles with a lognormal distribution of ensemble spreads, the spread-skill

correlation cannot exceed 0.80 (Houtekamer, 1993). In the current study the forecasts were

split into groups of 70 forecasts with similar ensemble spreads. The average absolute error

associated with each group was then plotted against the average ensemble spread

associated with the group.

The skill of ensemble forecasts is often decomposed into two components; sharpness and

reliability (Murphy, 1997). The sharpness describes how narrow the ensemble forecast is,

while the reliability describes whether the spread is a fair reflection of the forecast

uncertainty. If an ensemble forecasting system is reliable then it is equally probable that the

verification will fall into each of the intervals between the ranked ensemble members. This

property can be evaluated using rank histograms (also called ‘Talagrand Diagrams’). Rank

histograms are constructed by sorting the members of each ensemble into order (based on a

single forecast quantity at a single lead time) and then building a histogram of the frequency

with which the verification falls into each of the intervals between the ensemble members. In

the case of a 51-member ensemble there are 52 intervals; 50 intervals between members and

two open intervals at the ensemble extremes. A flat rank histogram is a necessary, although

not a sufficient, condition of reliable forecasts (Hamill, 2001).

When estimating skill measures of forecasts, as when estimating the value of any

statistic from data, the uncertainty of the estimate should itself be estimated. In the current

study uncertainty estimates were made using a bootstrap resampling technique (Efron and

Tibshirani, 1986). The original time series of forecast-verification pairs was broken into

blocks, each of 20 days in length. The block length was chosen so that the forecasts in
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successive blocks would be uncorrelated. These blocks were then sampled, with

replacement, to create a new time series of forecast-verification pairs of the same length as

the original. The skill measure in question was then calculated for this time series of

forecast-verification pairs. This process was repeated a number of times to produce a

number of estimates of the skill measure. From this collection of estimates the mean

estimate and its standard error were estimated.
3. Results and discussion
3.1. Impact of post-processing: skill in the mean

The linear correlations between ensemble means and the verification for significant

wave height forecasts are shown in Figs. 3–6. From these figures it can be seen that the

mean of the ECMWF ensembles has significantly higher skill than the persistence

forecasts shown for comparison. Persistence forecasts simply assume that current

conditions will persist into the future. It should also be noted that the post-processed

(regressed and dressed) forecasts in the right-hand panels retain this skill. The post-

processing method is not designed to improve the skill in the mean of the ensemble it is

designed to give a better prediction of forecast uncertainty. The only case where post-

processing introduces a significant change in the skill of the ensemble mean is in the

Campos Basin (Fig. 5) where the means of the post-processed ensembles have a higher

correlation skill score than the raw ensembles.
Fig. 3. The linear correlation between the ensemble means and the analyses for the Bonga site for the period

March 1999 to December 2001 for significant wave height. The left panel is the correlation between the mean of

the unprocessed ECMWF ensemble and the analyses, while the right panel is the correlation between the mean of

the regressed and dressed ensemble and the analyses. The skill of a persistence forecast (assume current

conditions persist) is shown for comparison. Note that post-processing has little impact on this measure of the

skill of the ensemble mean, this is not surprising as the post-processing is designed to improve predictions of

forecast uncertainty, not of the ensemble mean. The error bars are standard error estimates obtained using

bootstrap resampling of 20 day blocks.



Fig. 4. As Fig. 3 but for Maui.
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3.2. Impact of post-processing: skill in the distribution

As mentioned in the previous section, however, the value of ensemble forecasts lies in

their ability to quantify forecast uncertainty rather than their ability to improve forecast

skill in the traditional deterministic sense. Figs. 7–10 show the spread-skill relationships

for the ensembles at the four locations at lead times of 1, 4 and 10 days. The top panels in

each figure show the skill (averaged over 70 forecasts) plotted against the spread for the

raw ensembles of significant wave height. The bottom panels show the same thing for the

post-processed (regressed and dressed) ensembles. At all four locations the plotted points

in the upper panels tend to lie above the dashed diagonal line implying that the spread of

the raw ensembles underestimates the actual expected error. In all four locations the

spread-skill relationship of the post-processed ensembles tends to lie close to the diagonal.

In some cases, for larger spreads, the points appear to systematically fall below the

diagonal implying that in these cases the post-processed ensemble spread slightly
Fig. 5. As Fig. 3 but for the Campos Basin. In this case post-processing improves the skill of the ensemble mean at

most lead times.



Fig. 6. As Fig. 3 but for the Santos Basin.
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overestimates the actual expected error. This happens primarily at a lead time of 10 days.

The overall effect of post-processing, however, is to increase the spread of the ensembles

such that the mean absolute deviation of ensemble members from the ensemble mean is a

good quantitative predictor of the expected absolute error between the verification and the

ensemble mean. This is consistent with the ensemble being a good estimate of the

distribution from which the verification is drawn, but for a further assessment of the

reliability of the ensembles rank histograms were used.

Figs. 11–14 show rank histograms for the ensembles at the four locations at lead times

of 1, 4 and 10 days. The top panels show the histograms for the unprocessed 51-member

ECMWF ensembles while the bottom panels show the histograms for the post-processed

51-member ensembles. It is clear from the top panels that the verification falls outside the

unprocessed ensemble far more often than would be expected for reliable ensembles. In a

reliable 51-member ensemble one would expect the verification to fall outside the

ensemble 2/52z3.8% of the time. At lead times of 1 and 4 days the verification falls

outside more than 30% of the time at Santos Basin and Maui and over 60% of the time at

Campos Basin and Maui. At a lead time of 10 days the verification falls outside the

ensemble more often than it should at Bonga, Maui and the Campos Basin, although the

Santos Basin forecasts are consistent with reliable forecasts at 10 days. At the shorter lead

times the verification falls both above and below the unprocessed ensemble too often.

There is some asymmetry, however. In Fig. 12 for example it can be seen that at 4 days the

verification tends to fall above the unprocessed ensemble far more often than it falls below.

This is indicative of a forecast bias, which regressing the ensembles should mitigate. The

bottom panels of Figs. 11–14 show that post-processing results in rank histograms that are

close to uniform. Such rank histograms are a necessary condition of reliable ensembles.
3.3. Relative impact of regression and dressing

The post-processing method consists of two steps—regression and dressing. The

relative impact of these two steps is examined in Figs. 15 and 16. From these figures it can

be seen that regressing the forecasts, without dressing leads to ensembles, which do not



Fig. 7. A comparison of the spread-skill relationship of significant wave height forecasts at Bonga. Each point was obtained by calculating the average error of the

ensemble mean of 70 ensembles between March 1999 and December 2001 with similar ensemble spreads. The dashed lines are the lines along which the points would be

expected to fall if the ensembles were perfect. Points above this line correspond to cases when the ensemble spread underestimates the true error, points below this line

mean that the ensemble spread is larger than the true error. The top panels show the spread-skill relationship for the raw 51-member ECMWF ensembles, while the

bottom panels show the relationship for a 51-member ensemble obtained by regressing and dressing the raw ensemble. The error bars represent the standard error

estimates obtained by bootstrap resampling. Note that the raw ensembles generally underestimate the error. The processed ensembles provide a better indication of the

expected forecast error, although there is a tendency for them to overestimate the larger errors.
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Fig. 11. A comparison of rank histograms of the 51-member unprocessed ECMWF ensemble and a 51-member ensemble constructed by regressing and dressing the

ECMWF ensemble. The top panels show the rank histograms of the unprocessed ensembles at lead times of 1, 4 and 10 days. The bottom panels show the histograms of

the processed ensemble for the same lead times. The histograms were constructed using forecasts for the period March 1999 to December 2001. The error bars are the

standard error estimates obtained by bootstrap resampling the forecasts in blocks of 20 days. The dashed lines represent the fraction of forecasts that would lie in each

interval in a flat rank histogram (1/52z1.9%). It can be seen that the raw ensembles have rank histograms which are overpopulated at the extremes whereas the processed

ensembles have histograms which are nearly flat—a necessary condition of reliable forecasts. Note that the verification lies outside the raw ensembles far more often that

would be expected for reliable forecasts—70% of the time at 1 day compared to the expected 2/52z3.8% of the time.
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Fig. 15. A comparison of the spread-skill relationship of ensemble forecasts which have only been regressed but not dressed (top panels) with those which have been

dressed but not regressed (bottom panels). The forecasts are for significant wave height in the Santos Basin. Notice that if the forecasts are regressed but not dressed the

errors are greatly underestimated, even more than for the raw ensemble at 10 days (compare with Fig. 10). If the forecasts are only dressed, without first regressing them,

the results are very similar to the full processing step.
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Fig. 16. A comparison of the reliabilities of ensemble forecasts which have only been regressed but not dressed (top panels) with those which have been dressed but not

regressed (bottom panels). The forecasts are for significant wave height in the Santos Basin.
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have enough spread to accurately reflect forecast uncertainty. In contrast, dressing the

forecasts without regressing them improves the reliability the forecasts. At a lead time of

10 days the rank histogram of the dressed but unregressed ensembles appears to have too

few forecasts populating the outer intervals suggesting that the dressed ensembles are too

wide, although the statistical significance of this effect is small. The dressing stage of the

post-processing technique has the biggest impact on the forecasts but it should be used in

conjunction with the regression stage to correct for additive and multiplicative forecast

bias and to prevent the post-processed ensembles from having too much spread.
4. Conclusions

A post-processing technique that involves regression and ‘best member dressing’ of

ensemble forecasts of significant wave height has been applied to ECMWF ensemble

forecasts of significant wave height at four locations of interest to the offshore oil industry.

For any given day the post-processing technique used only the previous two months of

forecasts. The evaluation period was from March 1999 to December 2002. The ensemble

mean of the post-processed ensembles retain the same skill as the unprocessed ensembles

but the post-processed ensembles provide much better predictions of the likely forecast

error. This information is of considerable value to forecast users who have a nonlinear or

asymmetric exposure to wave variability.

The relatively short database required for the technique to provide improvements is of

practical significance, as it means that the method can be implemented in the absence of a

large historical database of past forecasts and verifications. It has been found that a

similarly small database of past forecasts is needed to recalibrate mesoscale weather

forecasts using a Bayesian technique similar to the dressing method presented in this paper

(Raftery et al., 2003).
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