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work must be provided that allows for a flexible conceptualization of disorders,
able to absorb further discoveries on their constitution and aetiology, and trying to
meet the challenge of keeping together the visions of biomolecular research and of
health care.

Acknowledgments: 1 would like to thank Marta Bertolaso and Matteo Cerri for
their helpful input.
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ProBABILISTIC FORECASTING:
Wny MobpEL IMPERFECTION Is A PorsoN PiLL

ABSTRACT

Foretelling the future is an age-old human desire. Among the methods to pursue
this goal mathematical modelling has gained prominence. Many mathematical
models promise to make probabilistic forecasts. This raises the question of exactly
what these models deliver: can they provide the results as advertised? The aim of
this paper is to urge some caution. Using the example of the logistic map, we argue
that if a model is non-linear and if there is only the slightest model imperfection,
then treating model outputs as decision relevant probabilistic forecasts can be seri-
ously misleading. This casts doubt on the trustworthiness of model results. This
is nothing short of a methodological disaster: probabilistic forecasts are used in
many places all the time and the realisation that probabilistic forecasts cannot be
trusted pulls the rug from undemeath many modelling endeavours.

l. INTRODUCTION

Foretelling the future is an age-old human desire, and the methods to pursue this
goal are varied. Ancient Greeks consult an oracle; the superstitious ask a fortune
teller to read the cards, and the rationally minded revert to scientific methods.
Among the methods of science, mathematical modelling has gained prominence:
from planetary motion to nuclear fission; and from the growth of a population to
the returns of an investment, there is hardly a phenomenon that has not at one point
or other been modelled mathematically. Many of these models make probabilistic
forecasts: they provide us with probabilities for certain future events to occur.
Weather models, climate models, financial market models, and hydrological mod-
els are but some prominent examples of models making probabilistic predictions.
Designing such models is aided by the availability of ever increasing computa-
tional power, which has led to a trend of building ever larger and more complex
models which are capable of making ever more precise predictions on an ever
finer scale.

An example of the use of such a model is the recent project called United
Kingdom Climate Projections (UKCP), which aims to make high resolution

H. Andersen et al. (eds.), New Challenges to Philosophy of Science, 479
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430 Roman Frigg, Scamus Bradley, Reason L. Machete and Leonard A. Smith

probability forecasts of the climate for up to 2100. Figure 1 provides an example
of such a forecast. It shows probabilities for different changes in precipitation un-
der a medium level emission scenario.! The figure tells us, for instance, that there
is a 0.5 probability for a 20-30% reduction in precipitation in London by 2080.
One of the striking aspects of this prediction is its precision. Calculations are made
for a high resolution grid and so the forecast is able to distinguish, for instance,
between the effects of climate change in London and Oxford (which are only an
hour apart by train).

i
- LJIC CuMATE
p % PROJECTIONS
.
10% probability level 50% probability level 90% probability level
Very unlikely to be Central estimate Very unlikely to be
less than greater than

Summer
gﬁ .

':J:..‘;(M,»'"
-
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Figure 1. Change in summer mean precipitation (%) for the 2080s under a medium
emission scenario. Source: UKCP?

Computational power does not come for free. Super-computers are expensive
tools, and developing and operating large computational models takes up the best
part of the working hours of an ever increasing number of scientists. This raises
the question of exactly what these models deliver: can these models provide the
results as advertised?

1 UKCP uses the IPCC A1B scenario. This is a kind of “optimistic” scenario of rapid
growth and then a levelling oft of the population by 2050 and a balance of renewable
and fossil fuel energy. Total cumulative emissions amount to roughly twice what cu-
mulative emissions were in 1990.
http://www.ukeip.org.uk/wordpress/wp-content/UKCP09/Summ_Pmean_
med_2080s.png; retrieved on 12 October 2011.

[§8]
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The aim of this paper is to urge some caution. We argue that if a model is non-
linear and if there is only the slightest model imperfection, then treating model
outputs as decision relevant probabilistic forecasts can be seriously misleading.
This casts doubt on the trustworthiness of model results like the one we have just
seen. In what follows we discuss this claim with a focus on climate modelling; we
do so for the purpose of illustration and emphasise that the problem we describe
crops up in all phenomena best modelled by non-linear models.

We begin by outlining the general methodology used in producing probabilis-
tic forecasts, which we refer to as the default position (Section 2). Using computer
simulations in a simple model we show that the default position produces serious-
ly misleading results if the dynamics of the system is non-linear (Section 3). This
casts serious doubt on the trustworthiness of model-based probability distribu-
tions, and there is unfortunately no quick and easy way to dispel these doubts (Sec-
tion 4). This raises serious questions about how models are (and indeed should be)
used to make informed policy decisions (Section 5).

2. THE DEFAULT POSITION

From a formal point of view, a climate model is a dynamical system, which we
denote by (X, ¢, u). As the notation indicates, a dynamical system consists of
three elements. The first element, X; is the system’s state space, which contains all
states in which the system could be. What these are depends on the nature of the
system. For instance, the state space of a particle moving along a straight line are
the real numbers, and the one of a hockey puck sliding on a square ice rink the unit
square. The second element, ¢, is the flow (or time evolution): if the system is in
state x&X now, then it is in y = ¢ (x) at any later time z. In other words, @,, tells us
how the system’s state changes over the course of time. The third element, 4, is the
system’s Lebesgue measure: it allows us to say that parts of X have a certain size.
In case X is the real axis, 4 is the length of an interval, and if X is the unit square
the measure informs us what the area of parts of the square are. In the argument
to follow 4 plays no role and we note it here merely for the sake of completeness.

In the case of climate models X consists of relevant weather variables (such as
air temperature, precipitation, wind speed, ...), and ¢, tell us how they change over
time. When descibed at that level of abstraction, one could be left under the im-
pression that climate models are rather simple things. It is important to counter this
impression before it gains traction. A full specification of the system’s state space
would involve giving the air temperature, precipitation, etc. at every point in the
atmosphere of the earth! It is not only a practical impossibility to obtain these data;
it is also an impossibility to store them with digital technology. For this reason we
discretise the state space, meaning that we put a grid with a fininte number of cells
on X and represent the state of an entire cell by one set of values for the relevant
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variables. The grid size is the length of the sides of the cells. Typically the grid size
used in a climate model is well over 100km. Covering the world with such a grid
still leaves us an enormous amount of data! Yet it is important to emphasise that
the volume of numbers notwithstanding, this is a rather coarse description. For
instance, the weather in the entire city of London is now represented by one set
of numbers (one number for temperature, one for precipitation, etc.). The dynam-
ics of the model raises even more issues. In order to specify @, we have to make
a number of strongly idealising assumptions: we distort important aspects of the
topography of the surface of the earth as the resolution of these models does not al-
low for realistic mountain ranges like the Andes, does not resolve the southern half
of the state of Florida, many islands simply don’t exist, including small volcanic
island chains easily visible in satelite photographs due to their interaction with
clouds, and of course cloud fields themselves are not modelled realistically. Based
on these idealising assumptions we can use basic physics (essentially fluid dynam-
ics and thermodynamics) to formulate the equations of motion for the simplified
earth’s climate system. These equations are non-linear and we cannot solve them
analytically. For this reason we resort to the most powerful computers available to
compute solutions. The result of these computer simulations is ¢, .’

The formal apparatus developed so far has it that the flow takes as input a
particular initial state x and then tells us into what state y = ¢ (x) this condition
evolves under the dynamics of the system. Unfortunately this algorithm is not very
useful in practice because we never know in what exact state the system is (if such
a thing exists at all). To begin with, there is no measurement device that provides
exactly correct values and so every measurement result comes with a certain mar-
gin of error. But more importantly, there is no such thing as ke true wind speed in
a model grid point corresponding to central London! All we can truthfully say is
something like ‘the wind speed at a particular random location within that grid cell
is likely to lie within a certain range’. We account for some of these uncertainties
by specifying a probability distribution p (x) over initial states, where the subscript
indicates that the distribution describes our uncertainty about the initial condition
atz = 0. There is of course a legitimate question about what the correct distribution
is; we set this issue aside and assume that in one way or another we can come by
the correct p (x) (in the sense that it is a correct representation of our uncertainty).*

3 Fora general introduction to climate modelling see Kendal McGuffie and Ann Hender-
son-Sellers, A Climate Modelling Primer. 3rd ed. New Jersey: Wiley 2005; a discus-
sion of the specific models used in UKCP can be found at http://ukcp09.defra.gov.uk/.

4 For a discussion of different kinds of uncertainty and their sources see Seamus Bra-

dley, “Scientific Uncertainty: A User’s Guide”, in: Grantham lnstitute on Climate

Change Discussion Paper 56. 2011 (available at http://www2.1se.ac.uk/Granthamlnsti-

tute/publications/WorkingPapers/Abstracts/50-59/scientific-uncertainty -users-guide.

aspx), and Leonard A. Smith and Nicholas Stern, “Uncertainty in Science and its Role
in Climate Policy” Philosophical Transactions of the Royal Society A 369, 2011, pp.

1-24.
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The question then becomes: how does p,(x) change over the course of time? The
flow ¢, can now be used to move p(x) forward in time: p,(x) = ¢ [p,(x)].° This
distribution is the central item of the default position, the view that we obtain the
decision-relevant probabilities for certain events to occur by plugging the initial
distribution into the model and using the flow to obtain forecast probabilities for
events at later times. The qualification ‘decision-relevant’ is crucial. The default
position does not make the (trivial) statement that p,(x) is a probability distribu-
tion in a formal sense (i.e. that it is a mathematical object satisfying the axioms of
probability); it is committed to the (non-trivial) claim that these probabilities are
the correct probabilities for outcomes in the world in the sense that a rational deci-
sion maker should adjust his/her beliefs to these probabilities and act accordingly
(assuming that there is no other pertinent evidence). In other words, p,(x) is taken
to provide us with predictions about the future of sufficient quality that we ought
to place bets, set insurance policies, or make public policy decisions according to
the probablities given to us by p,(x).°

3. THE POISON PILL

Its intuitive appeal notwithstanding, the default position is wrong: p,(x) need not
be the correct probability distribution, and taking p (x) as a guide to actions can
be ruinous. Our strategy is to present a case where one can explicitly see that p,(x)
need not be the correct probability distribution. This is enough to refute the default
position, which has it that p (x) always is the correct probability distribution.
Consider the following thought experiment. McMath has a pond in his garden
where he breeds fish. He does not like being a hostage to fortune and wants to plan
carefully how much food he will have to buy to feed his fish. To this end he con-
structs a model which allows him to predict the size of the population in his pond
at a given time. He first introduces the population ratio p,: the number of fish in
the pond at time # divided by the maximum number of fish the pond could accom-

modate; p, lies in the unit interval [0, 1]. To predict future populations he comes up
with

5 We use square brackets to indicate that ¢, [ p,(x)] is the propagating forward in time of
the initial distribution p(x). The flow of distribution derives from the flow of a state
as follows: p, (x) = ¢, [p,(x)] = 3., p,(z,), where the sum of z reflects each of the states
in X which are mapped onto x under the flow ¢, (i.e. ¢,(z) = x for all i); if the flow is
invertible this reduces to p, (x) = p (¢ ,(x)).

6 UKCPO9 probabilities are formed in a more complicated manner, combining outputs
from multiple (imperfect) models using Bayesian methods (see http://ukclimateprojec-
tions.defra.gov.uk/23239 and http://ukclimateprojections.defra.gov.uk/23210). Howe-
ver, it is unclear why combining the outputs of several structurally imperfect models
should make the problems we describe in the following section go away.
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P =4p(1-p), 1)
where time ¢ is measured in units of weeks. So the model says that the population
ratio in a week’s time is four times today’s ratio multiplied by one minus today’s
ratio.’

This allows McMath to predict the future size of his population given he
knows today’s size. The model is a dynamical system in the above sense with the
unit interval [0, 1] being the state space, the flow being given by Equation 1, and
the measure being the “usual” length of real intervals. So McMath decides to fol-
low the prescription of the default position: he puts a probability distribution p, (x)
over the initial conditions — here today’s population ratio — and moves it forward
in time under the dynamics of the system. He then uses the predictions thus gener-
ated to bet with one of his fellow villagers. The bet is “above or below 0.5”: they
split the unit interval into two equal parts, (0, 1/2) and (1/2, 1), which they call 4
and B respectively, and bet on whether 4 or B occurs in two months’ time.

How successful will McMath be? Will he feed his fish well and will he win
the bet against his mate? At this point the second part of our thought experiment
begins: as we are pondering this question, we are incredibly lucky: heaven opens
and God whispers the formula of the world’s true dynamics into our ear:

P o= 400-p)|(1-)+ 3 £(57 —p,+ 1) @)

where ¢ is a parameter taken here to be 0.1. We immediately realise that this is just
McMath’s model plus a small perturbation. Figure 2 shows both the model (Equa-
tion 1) and the world (Equation 2), which makes obvious how similar the two are.

7 Equation (1) is of course just the well-known logistic map. The rationale for choosing
this equation is that it is one ot the simplest non-linear maps and that it has originally
been proposed as a population model; see Robert May, “A Simple Mathematical Equa-
tion with very Complicated Dynamics”, in: Nature 261, 1976, pp. 459-469. For the
ease of presentation we assume that a new generation of fish is born once a week.
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Figure 2. Equation 1 in blue (dotted line) and Equation 2 in yellow (drawn line)
with p, and p; on the x-axis and P, and g on the y-axis.

The maximum error of the model is 5 X 10 at x = 0.85344, where p,., =0.50031
and /7, = 0.49531. This error is really small, which would lead us to believe that
McMath’s predictions should be accurate, and that therefore the use of the default
position should be a winning strategy.

But calculations are better than intuitions, and so we use our God-given in-
sider knowledge to see how well McMath will do. We move the initial distribution
P,(x) forward in time both under the dynamics of the model (Equation 1) and the
world (Equation 2), which gives us the two distributions P’ (x) and p (x) for the
model and the world respectivley. If the default position was correct, one would
have to find that p” (x) and P (x) are identical, or at least broadly overlap. This is
because, by assumption, the initial distribution is the correct distribution and the
dynamics of the world is the true dynamics, hence P (x) is the correct distribution
and p’/(x) captures what happens in the world only to the extent that it agrees with
Pi).

Since we don’t know how to calculate P (x) and p"(x) with pencil and paper,
we resort to computer simulation. To this end. we divide the system’s state space
into 49 cells (which. in this context. are usually referred to as ‘bins’). We then
choose an initial distribution of 1024 points which is distributed according to the
invariant measure within a radius of 7 % 10 from the true initial condition. The
true initial condition is randomly chosen; in the concrete example to follow it hap-
pens to lie in the third bin. The true initial condition was within the same interval.
but not necessarily at the centre. In turn we iterated forward in time 1024 points
from the initial distribution (see first graph in Figure 3) under each of dynamical
laws. The other graphs in Figure 3 show how many points there are in each bin
after two, fours and eight weeks respectively. Dividing these numbers by 1024
yields an estimate of the probability for the system’s state to be in a particular bin.
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bl
{cy

Figure 3. The evolution of the initial probability distribution under the dynamics
of the model (Equation 1, blue line) and the world (Equation 2, yellow line).

These calculations show the failure of the default position. While the two distribu-
tions overlap relatively well after two and four weeks, they are almost completely
disjoint after two months. The implications of this for McMath are dramatic. His
calculation led him to believe that after two months p(4) =1 and p(B8) = 0 (this
is read off from the blue line in the fourth graph in Figure 3). This led him to offer
extremely long odds on 4.%

But the correct probabilities (read off from the yellow line in the same fig-
ure) are p(4)=0.1 and p(8) = 0.9. So he is very likely to lose a large amount of
money to his fellow villager!®

The moral of this thought experiment is that if a non-linear model differs from
the truth only by a little bit (i.e. if the model has only a slight structural imperfec-

8  We use so-called odds-for, which give the ratio of payout to stake. These are conveni-
ent because they are reciprocals of probabilities; i.e. if p(4) is the probability of 4, then
0(4) = 1/p(4) are the odds on 4.

9  Notice that our argument does not trade on worries about p (x). We assume that the
initial distribution gives us the correct initial probabilities and that setting ones degrees
of belief in accordance with these probabilities would be rational. The core of our con-
cemn is what happens with these probabilities under the time evolution of the system.
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tion), then probabilistic predictions can break down. This implies that the default
position is wrong. Simply moving forward in time an initial distribution under
the dynamics of the model will not yield decision-relevant probabilities! But the
break-down of the default position is nothing short of a methodological disaster:
as we mentioned above, the default position is used in many places all the time
and the realisation that probabilistic forecasts cannot be trusted pulls the rug from
underneath many modelling endeavours. One can sum up the result of our story in
the slogan that model imperfection is a poison pill.

An immediate reply would point out that we have biased the presentation of
the case in various ways to artive at our conclusion and that the situation is in fact
less dire than we make it out to be. The first bias is the focus on the two months
forecast: had we focussed on the one month forecast McMath’s forecasts would
have been accurate enough to make both his planning and betting sustainable.
Perhaps, perhaps not. In the real world heaven doesn’t open and no one whispers
true dynamical laws into our ears. So we cannot simply compare the model with
the true dynamics and affirm that we are fine at £ = 4. In fact, if we knew the true
dynamics we would not need a model in the first place! All we have is a model,
and we know that the model is imperfect in various ways. What the above scenario
shows is that model-probabilities and probabilities in the world can come unstuck
dramatically, and as long as we have no means of telling when this happens, we
better be on guard! For all we know there is no method of predicting when the
model is accurate other than knowing the truth in advance, in which case we would
not bother with a model anyway.

The second alleged bias is the choice of the initial distribution. In order to run
the calculations we have to choose a particular initial distribution (1024 points
distributed according to the invariant measure within a radius of 7 X 10~ from the
true initial condition, which came to lie in the third bin). However, so the argument
goes, this must be a special case that we have carefully chosen in order to drive
home our sceptical conclusion; most of the distributions do not behave in this way
and models provide trustworthy results most of the time. Our story, so the counter
continues, shows at most that every now and then unexpected results happen, but
does not warrant a wholesale rejection of the default position.

There is no denying that our calculations rely on a particular initial distribu-
tion, but that realisation does not rehabilitate the default position. We repeated that
same calculation with a large number of randomly chosen initial distributions,
and it turned out that about one third of these distributions showed behaviour
similar to that seen in Figure 3; another third resulted in forecast distributions that
manifested an overlap of about fifty percent; and only one third behaved roughly
as the default position would lead us to expect. Hence, the problems we describe
are by no means as rare as those critics would have it, and as long as we have no
systematic way of drawing a line between the good and the bad distributions, we
had better not rely too heavily on our calculations when making provisions for the
future.
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Some may have started wondering what all this has to do with modelling in
the sciences; after all, what we care about is the future climate or the stability of
financial markets and not the fishing success of an imaginary Scotsman. Unfortu-
nately the connection between our imaginary scenario and ‘real’ scientific cases
is tighter and more immediate than we would like it to be. The problems arise if
models are non-linear and imperfect, and many scientific models have these prop-
erties. Without question, climate models have both these properties. 1t is not clear
how to interpret the situation when different models agree (give indistinguishable
probability forecasts), but in the climate case the different models give very differ-
ent distributions (cf. the last IPCC Report, WG I) and so we know that the details
of the models have a significant impact on expected results.'* So when calculating,
say. monthly precipitation in the 2080s based on climate models we may well not
fare better with our planning of tlood provision and water systems than McMath
with bets.

4. ANTIDOTE WANTED

The first serious issue is whether Equations 1 and 2 are good proxies for all other
non-linear systems. Equation 1 is of course the well-known logistic map with the
independent parameter set equal to 4, which results in the dynamics being cha-
otic:"' Equation 2 is a perturbed version of it. By saying that climate or finance
models will face the same predictive breakdowns we implicitly assume that the
problems when making predictions with the logistic map are typical of non-linear
models and will also occur in systems with completely different dynamical laws
(as long as they are non-linear). 1t is fair to say that there is no hard and fast argu-
ment for this conclusion. However, it seems to us that the burden of proof lies with
those who want to argue that the default position does not run into the problems
we describe when used in the context of other non-linear models. Since the rise of
chaos in the 1980s a bewildering array of non-linear systems has been studied and
the general moral to be drawn from these studies is that random properties of sys-
tems get more dominant as (a) parameter values controlling the non-linear terms
increase and (b) the size of the systems increases.'?> Generalising from these cases

10 See Leonard Smith, “What Might We Learn from Climate Forecasts?”, in: Proceed-
ings of the National Academy of Science USA 4, 99, 2002, pp. 2487-2492.

11 See Robert May, “A Simple Mathematical Equation with very Complicated Dynam-
ies”, loc. cir. and Leonard Smith, Chaos. 4 Very Short Introduction. Oxford: Oxford
University Press 2007.

12 By ‘random properties’ we meun, for instance, properties belonging to the ergodic
hierarchy such as being mixing or Bemoulli; for a discussion of these see Joseph
Berkovitz, Roman Frigg, and Fred Kronz, “The Ergodic Hierarchy, Randomness and
Chaos™, in: Studies in History and Philosophy of Modern Physics 37, 2006, pp. 661-
691. An example of a system that becomes increasingly random as the perturbation pa-
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one would expect that climate models, which are both strongly non-linear and
huge, should display more rather than less of the problems we have seen above.

Another set of issues concerns lead times. Three challenges can be mounted.
The first points out that all we are interested in are short term predictions and
the above results show that in the short term the model forecasts appear accurate
— hence there is no cause for concern. In some cases this seems to be the right
response. In weather forecasting, for instance, we are mainly interested in predict-
ing the immediate future and hence limiting model runs to the short term is the
right thing to do. But this response does not work in all cases. In both weather
and climate modelling, for instance, we also are interested in the medium or long
term behaviour and so we cannot limit predictions to short lead times. Of course
what counts as short-term or long-term is relative to the model and it could be the
case that by the standards of the relevant climate models a prediction for 2080 is
still a short term prediction. We are doubtful that this is the case. Indeed, it would
be surprising if such predictions would turn out to be short term by the lights of a
model used to make that prediction, in particular given that state of the art climate
models differ even in terms of their performance over the past century. Again the
burden of proof lies squarely with those who believe that this is the case.

The second challenge argues for the opposite conclusion: what we are inter-
ested in is long term behaviour and so we can actually do away with detailed pre-
dictions completely and just study the invariant measure of the dynamics because
it is the invariant measure that reflects a system’s long term behaviour. Implicit in
this proposal is the assumption that the invariant measures of similar dynamical
laws are similar, because unless Equations 1 and 2 have similar invariant measures
there is no reason to assume that adjusting beliefs according to the invariant meas-
ure is less misleading than adjusting them according to P’ (x). However, it is at
best unclear whether this is so. There is no proof that invariant measures have this
property. Nonlinear systems are not expected to be structurally stable in general,
which suggests that invariant measures need not be similar. And what is worse
still, unlike McMath’s pond, the world’s climate is a transient system and as such
it does not have an invariant measure at all.

The third challenge is that we are playing fast and loose with the notion of
prediction. While McMath wants to predict what happens exactly two months
from now, the above climate prediction is an average for the 2080s. So we would
be comparing apples and pears. Not quite. What UKCP provides are not decadal
forecast distributions. They provide an average for every year (the claim being that
the distribution is the same in each year of the 2080s). This is not so different from
weekly predictions in the fish model. Other predictions made by UKCP include

rameter is turned up is the Hénon-Heiles system; see John Argyris, Gunter Faust, and
Maria Haase, An Exploration of Chaos. Amsterdam: Elsevier 1994. For a discussion
of systems that become more random as the number of particles increases see Roman
Frigg and Charlotte Werndl, “Explaining Thermodynamic-Like Behaviour in Terms of
Epsion-Ergodicity”, in: Philosophy of Science 78, 3, 2011, pp. 628—652.
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the forecasts for the hottest day in August of a particular year. So what UKCP
provides are not long term averages and hence an appeal to averages does not help
circumventing the difficulties we describe.

5. CONCLUSION

We have argued that the combination of non-linear dynamics and model imperfec-
tion is a poison pill in that it shows that treating model outputs as probabilistic
predictions can be seriously misleading. Probabilistic forecasts are therefore unre-
liable and do not provide a good guide for action as such.

This raises two questions. The first concerns the premises of the argument.
The model being non-linear has been an essential ingredient of our story. While
this assumption is realistic in that many relevant models have this property. there
is still a question whether the effects we describe are limited to non-linear models.
Arguably, if the world was governed by linear equations, then imperfect linear
models need not suffer from the effects we discuss so badly. One might like to
avoid the assumption that the world is governed by any equations, of course, but
the relevant point here is the role of model imperfections: a linear model will suf-
fer from these effects unless its imperfections are also linear. The model being
linear does not remove the ditficulty we note. And of course, in practice the best
models are rarely linear, nor are the relevant laws of physics.

The second question is what conclusion we are to draw from the insight into
the unreliability of model-based probabilities. An extreme reaction would be to
simply get rid of them. But this would probably amount to throwing out the baby
with the bathwater because, as we have seen, in about one third of the cases the
model indicates usefully. So the challenge is to find a way to use the model when
it provides insight while guarding against damage when it does not. Finding a way
of doing this is a challenge for future research.
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