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ABSTRACT

While state-of-the-art models of Earth’s climate system have improved tremendously over the last 20 years,

nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system realistically.

Contrasting the skill of these models not only with each other but also with empirical models can reveal the space

and time scales on which simulation models exploit their physical basis effectively and quantify their ability to add

information to operational forecasts. The skill of decadal probabilistic hindcasts for annual global-mean and

regional-mean temperatures from the EU Ensemble-Based Predictions of Climate Changes and Their Impacts

(ENSEMBLES) project is contrasted with several empirical models. Both the ENSEMBLES models and a ‘‘dy-

namic climatology’’ empirical model show probabilistic skill above that of a static climatology for global-mean

temperature. The dynamic climatology model, however, often outperforms the ENSEMBLES models. The fact

that empirical models display skill similar to that of today’s state-of-the-art simulation models suggests that em-

pirical forecasts can improve decadal forecasts for climate services, just as in weather, medium-range, and seasonal

forecasting. It is suggested that the direct comparison of simulation models with empirical models becomes

a regular component of largemodel forecast evaluations.Doing sowould clarify the extent towhich state-of-the-art

simulation models provide information beyond that available from simpler empirical models and clarify current

limitations in using simulation forecasting for decision support. Ultimately, the skill of simulationmodels based on

physical principles is expected to surpass that of empirical models in a changing climate; their direct comparison

provides information on progress toward that goal, which is not available in model–model intercomparisons.

1. Introduction

State-of-the-art dynamical simulationmodels of Earth’s

climate system1 are often used to make probabilistic pre-

dictions about the future climate and related phenomena

with the aim of providing useful information for decision

support (Anderson et al. 1999; Met Office 2011;Weigela

and Bowlerb 2009; Alessandri et al. 2011; Hagedorn

et al. 2005; Hagedorn and Smith 2009; Meehl et al. 2009;

Doblas-Reyes et al. 2010, 2011; Solomon et al. 2007;

Reifen and Toumi 2009). Evaluating the performance of

such predictions from a model or set of models is crucial

not only in terms ofmaking scientific progress but also in

determining how much information may be available to

decision makers via climate services. It is desirable to

establish a robust and transparent approach to forecast

evaluation, for the purpose of examining the extent to

which today’s best available models are adequate over

the spatial and temporal scales of interest for the task at

hand. A useful reality check is provided by comparing

the simulation models not only with other simulation

models but also with empirical models that do not in-

clude direct physical simulation.

Decadal prediction brings several challenges for the

design of ensemble experiments and their evaluation

(Meehl et al. 2009; van Oldenborgh et al. 2012; Doblas-

Reyes et al. 2010; Fildes and Kourentzes 2011; Doblas-

Reyes et al. 2011); the analysis of decadal prediction
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1Models that use physical principles to simulate Earth’s climate

are often called general circulation models (GCMs), coupled

atmosphere–ocean global climate models (AOGCMs), or Earth

system models (ESMs). Such models are referred to as simulation

models throughout this paper. The key distinction is their explicit

use of physical principles to simulate the system of interest. Sim-

ulation models are to be contrasted with models based almost

solely on observations, which are referred to here as empirical

models following (Van den Dool 2007).
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systems will form a significant focus of the Intergovern-

mental Panel on Climate Change (IPCC) Fifth Assess-

ment Report (AR5). Decadal forecasts are of particular

interest both for information on the impacts over the

next 10 years, as well as from the perspective of climate

model evaluation. Hindcast experiments over an archive

of historical observations allow approaches from em-

pirical forecasting to be used for model evaluation. Such

approaches can aid in the evaluation of forecasts from

simulation models (Fildes and Kourentzes 2011; van

Oldenborgh et al. 2012) and potentially increase the

practical value of such forecasts through blending fore-

casts from simulation models with forecasts from empir-

ical models that do not include direct physical simulation

(Br€ocker and Smith 2008).

This paper contrasts the performance of decadal

probability forecasts from simulation models with that

of empirical models constructed from the record of

available observations. Empirical models are unlikely to

yield realistic forecasts for the future once climate

change moves the Earth system away from the condi-

tions observed in the past. A simulation model, which

aims to capture the relevant physical processes and

feedbacks, is expected to be at least competitive with the

empirical model. If this is not the case in the recent past,

then it is reasonable to demand evidence that those

particular simulation models are likely to be more in-

formative than empirical models in forecasting the near

future.

A set of decadal simulations from the Ensemble-

Based Predictions of Climate Changes and Their Impacts

(ENSEMBLES) experiment (Hewitt and Griggs 2004;

Doblas-Reyes et al. 2010), a precursor to phase 5 of the

Coupled Model Intercomparison Project (CMIP5) de-

cadal simulations (Taylor et al. 2009), is considered. The

ENSEMBLES probability hindcasts are contrasted with

forecasts from empirical models of the static climatology,

persistence, and a ‘‘dynamic climatology’’ model de-

veloped for evaluating other dynamical systems (Smith

1997; Binter 2012). Ensemble members are transformed

into probabilistic forecasts via kernel dressing (Br€ocker

and Smith 2008); their quality is quantified according to

several proper scoring rules (Br€ocker and Smith 2006).

The ENSEMBLES models do not demonstrate signifi-

cantly greater skill than that of an empirical dynamic cli-

matologymodel either for global-mean temperature or for

the land-based Giorgi region2 temperatures (Giorgi 2002).

It is suggested that the direct comparison of simula-

tion models with empirical models become a regular

component of large model forecast evaluations. The

methodology is easily adapted to other climate fore-

casting experiments and can provide a useful guide to

decision makers about whether state-of-the-art fore-

casts from simulation models provide additional in-

formation to that available from easily constructed

empirical models.

An overview of the ENSEMBLES models used for

decadal probabilistic forecasting is discussed in section 2.

The appropriate choice of empirical model for proba-

bilistic decadal predictions forms the basis of section 3,

while section 4 contains details of the evaluation frame-

work and the transformation of ensembles into proba-

bilistic forecast distributions. The performance of the

ENSEMBLES decadal hindcast simulations is pre-

sented in section 5 and compared to that of the empirical

models. Section 6 then provides a summary of conclu-

sions and a discussion of their implications. The sup-

plementary material includes graphics for models not

shown in the main text, comparisons with alternative

empirical models, results for regional forecasts, and the

application of alternative (proper) skill scores. The basic

conclusion is relatively robust: the empirical dynamic

climatology (DC) model often outperforms the simula-

tion models in terms of probability forecasting of tem-

perature.

2. Decadal prediction systems

Given the time scales required to obtain fresh out-

of-sample observations for the evaluation of decadal

forecast systems, forecast evaluation is typically per-

formed in sample using hindcasts. Hindcasts (or retro-

spective forecasts) are predictions made as if they had

been launched on dates in the past and allow some

comparison of model simulations with observations. Of

course, simulation models have been designed after

the study of this same historical data, so their ability to

reproduce historical observations carries significantly

less weight than success out of sample. Failure in sample,

however, can be instructive.

In a changing climate, even out-of-sample skill is no

guarantee of future performance, because of the non-

linear nature of the response to external forcing (Smith

2002; Reifen and Toumi 2009; Solomon et al. 2007).

Nevertheless, the fact that only simulation models based

on the appropriate physical principles are expected to be

able to generalize to new physical conditions provides

no evidence that today’s state-of-the-art simulationmodels

can do so. Contrasting probability forecasts from simula-

tion models with those from empirical models is one guide

2Giorgi regions are a set of land-based regions, defined in terms

of simple rectangular areas and chosen based on a qualitative un-

derstanding of current climate zones and on judgments about the

performance of climate models within these zones.
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to gauging the additional information derived from the

physical basis of the simulation model-based forecasts.

In practice, the most skillful probability forecast is often

based on combining the information from both simula-

tion models and empirical models (Van den Dool 2007;

Hoeting et al. 1999; Unger et al. 2009; Br€ocker and

Smith 2008; Met Office 2011).

Decadal predictions aim to accurately represent both3

the intrinsic variability and forced response to changes

in the Earth system (Meehl et al. 2009). Decadal simu-

lation models now assimilate observations of the current

state of the Earth system as initial conditions in the

model (Pierce et al. 2004; Troccoli and Palmer 2007). At

present it is not clear whether initializing the model with

observations at each forecast launch improves the skill

of decadal forecasts (Pohlmann et al. 2009; Hawkins

et al. 2011; Smith et al. 2007; Keenlyide et al. 2008; Smith

et al. 2010; van Oldenborgh et al. 2012; Kim et al. 2012).

At a more basic level, the ability to provide useful de-

cadal predictions using simulation models is yet to be

firmly established. Probabilistic hindcasts, based on

simulations from stream 2 of the ENSEMBLES project

[further details of which can be found in Doblas-Reyes

et al. (2010) and in the appendix], do not demonstrate

significantly more skill than that of simple empirical

models.

Figure 1 illustrates the 2 years running mean of sim-

ulated global-mean temperature from the four simulation

models in the multimodel ensemble experiment of the

ENSEMBLES project over the full set of decadal hind-

casts. Observations from the Hadley Centre/Climatic

Research Unit, version 3 (HadCRUT3) dataset and the

40 years European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40) are shown

for comparison; HadCRUT3 is used as the verification

dataset outcome archive for both the model evaluation

and construction of the empirical model. Using ERA-40

for the verification instead of HadCRUT3 does not

change the conclusions about the model skill signifi-

cantly (results not presented here). Global-mean tem-

perature is chosen for the analysis as simulation models

are expected to perform better over larger spatial scales

(Solomon et al. 2007). Even at the global scale, the raw

simulation output is seen to differ from the observations

both in terms of absolute values, as well as in dynamics.

Three of the four models display a substantial model

drift away from the observed global-mean temperature,

with ECHAM5 being the exception. The fact that some

of the models exhibit a substantial drift but not others

reflects the fact that different models employ different

initialization schemes (Keenlyide et al. 2005). ECHAM5

both assimilates anomalies and forecasts anomalies.

Assimilating anomalies is intended to reduce model

drift4 (Pierce et al. 2004); the remaining models are

initialized from observed conditions.

A standard practice for dealing with model drift is to

apply an empirical (linear) ‘‘bias correction’’ to the sim-

ulation runs (Stockdale 1997; Jolliffe and Stephenson

2003). Such a procedure both assumes that the bias of

a givenmodel at a given lead time does not change in the

future and is expected to break the connection between

the underlying physical processes in the model and its

forecast. Bias correction is often applied using the (sam-

ple) mean forecast error at each forecast lead time. The

mean forecast error is shown as a function of lead time

for global-mean temperature in Fig. 2 for each of the

ENSEMBLES models. Here, lead time 1 indicates the

average of the first 12 months of each simulation, ini-

tialized in November of the launch year.

The focus in this paper is on probability forecasts,

specifically on contrasting the skill of simulation model

probability forecasts with empirical model probability

forecasts. On weather forecast time scales and in the

medium range, simulation model–based probability fore-

casts clearly have more skill than empirical model proba-

bility forecasts based on climatology (Hagedorn and

Smith 2009). The question is whether, in the context of

decadal probability forecasting, simulation models pro-

duce decadal probability predictions that are more skill-

ful than simple empirical models. Answering this question

requires defining an appropriate empirical model.

3. Empirical models for decadal prediction

Empirical models are common in forecast evaluation

(Barnston et al. 1994; Colman and Davey 2003; van

Oldenborgh et al. 2005, 2012; Lee et al. 2006; Van den

Dool 2007; Laepple et al. 2008; Krueger and von Storch

2011; Wilks 2011). They are used to quantify the in-

formation a simulation model adds beyond the naive

baseline the empirical models define. They have also

been used to estimate forecast uncertainty (Smith 1992),

both as benchmarks for simulation forecasts and as

a source of information to be combined with simulation

model forecasts (Van den Dool 2007; Unger et al. 2009;

3 In reality, of course, no such distinct entities exist given the

nonlinearity of the Earth system. The nature of intrinsic variability

is inextricably linked to the state of the Earth system; there is no

separation into a natural component and a forced component.

4 For point forecasts, forecasting anomalies allows an immediate

apparent bias reduction at short lead times on the order of the

model’s systematic error.
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Smith 1997; Met Office 2011; Hagedorn and Smith

2009).

Empirical models based on historical observations

cannot be expected to capture previously unobserved

dynamics. Two empirical models typically used in fore-

cast evaluation are the climatological distribution and

the persistence model. In the analysis below, a static

climatology defines a probabilistic distribution gener-

ated through the kernel dressing and cross-validation

procedures applied to the observational record (Br€ocker

and Smith 2008; Hoeting et al. 1999), as outlined in

section 4. Persistence forecasts are defined according to

a similar procedure, based on the last observation, per-

sisted as a single ensemble member for each launch.

These models are not expected to prove ideal in

a changing climate; nevertheless information regarding

the ability (or inability) of a simulation model to out-

perform these simple empirical models is of value.

Alternative empirical models for probability forecasts,

more appropriate for a changing climate, define a dy-

namic climatology based on ensemble random analog

prediction (eRAP) (Smith 1997; Paparella et al. 1997).

Empirical forecasts are also used as benchmarks for

evaluating point forecasts of decadal climate predictions

(Fildes and Kourentzes 2011; van Oldenborgh et al.

2012; Doblas-Reyes et al. 2010).

Analog forecasting uses the current state (perhaps

with other recent states; Smith 1997) to define analogs

within the observational record (Van den Dool 1994;

Lorenz 1963; Van den Dool 2007). A distribution based

on images of each analog state (the observation imme-

diately following the analog state) then defines the en-

semble forecast. Analogs may be defined in a variety of

ways, including near neighbors either in observation

space or in a delay reconstruction (Smith 1994, 1997).

The ensemble members may be formed using the

FIG. 1. Global-mean temperature (2 years running mean) for the four forecast systems: (top left) HadGEM2 [Met Office (UKMO)],

(top right) IFS/HOPE (ECMWF), (bottom left) ARPEGE4/OPA [Centre Europ�een de Recherche et de Formation Avanc�ee en Calcul

Scientifique (CERFACS)], and (bottom right) ECHAM5 [Leibniz-Institut f€ur Meereswissenschaften (IFM-GEOMAR)] that form

stream 2 of the ENSEMBLES decadal hindcast simulations (Doblas-Reyes et al. 2010). HadCRUT3 observations and ERA-40 are also

shown for comparison. Note that the scale on the vertical axis for the ARPEGE4/OPAmodel is different than for the other three models,

reflecting the larger bias in this model.
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complete set of available analog states (dynamic cli-

matology; Smith 1997; Binter 2012) or by selecting from

the nearest neighbors at random, with the probability of

selecting a particular neighbor related to the distance (in

the state space) between the prediction point and the

neighbor (the random analog prediction method;

Paparella et al. 1997).

The dynamic climatologies constructed below provide

l-step-ahead forecast distributions based on the current

state and differences defined in the observational re-

cord. There are two approaches to forming such a dy-

namic climatology: (i) direct and (ii) iterated (Smith

1992). The direct DC approach used below considers the

l-step differences in the observational record (e.g., a

1-step difference might be the temperature difference

between the current state and its immediately preceding

state). A distribution is formed for each value of l from

the corresponding differences using all the observations

after some start date; thus, the size of the ensemble

decreases linearly with lead time because of the finite

size of the archive. For a forecast of a scalar quantity,

such as the global-mean temperature below, the DC

ensemble at lead time l launched at time t consists of the

set of Nl values,

ei 5 St1
lDi, i5 1, . . . ,Nl , (1)

where St is the initial condition at time t and
lDi i5 1, . . . ,Nl is the set of lth differences in the ob-

servational record. Figure 3 illustrates the DCmodel for

global-mean temperature, launched at 5 years intervals,

as in the ENSEMBLES hindcasts. A true out-of-sample

forecast up to the year 2015, initialized to the observed

global-mean temperature in 2004, is also included.

Each lead time 1 forecast is based on an ensemble of

48 members. In real-time forecasting Nl 5 N 2 l, while

for cross-validation purposes the ensembles in Fig. 3 use

N 2 l 2 1, omitting the Dj corresponding to the year

being forecast. Thus at lead time 9 each forecast is based

on an ensemble of 40 members. The DC approach is

shown below to outperform the ENSEMBLES models

when forecasting global-mean temperature.

FIG. 2.Mean forecast error as a function of lead time across the set of decadal hindcasts for each of theENSEMBLES simulationmodels

as labeled. Note that the scale on the vertical axis for the ARPEGE4/OPA model is different than for the other models, reflecting the

larger bias in this model.
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4. Probability forecasts from ensembles

No forecast is complete without an estimate of fore-

cast skill (Tennekes et al. 1987). Probability forecasts

allow a complete description of the skill from an en-

semble prediction system; they may be formed in sev-

eral ways. The IPCC AR4 (Solomon et al. 2007), for

example, defines a likely range subjectively, applying

the ‘‘60–40’’ rule5 to the mean of the CMIP3 model

global-mean temperatures in 2100. Insofar as the forecast–

outcomearchive is larger for decadal time scales, objective

statistical approaches are more easily deployed.

Decadal probability forecasts are formed by trans-

forming the ensemble into a probability distribution

function via kernel dressing (Br€ocker and Smith 2008).

A number of methods for this transformation exist and

a selection will impact the skill of the forecast. The

kernel dressed forecast based on an ensemble with N

members is (Br€ocker and Smith 2008)

p(y : x,s)5
1

Ns
�
N

i51

K

�
y2 (xi 1m)

s

�
, (2)

where xi is the ith ensemble member, m is the offset of

the kernel mean (this offset may have a different value

than the traditional bias term6), and s is the kernel

width. In this paper, the kernel K is taken to be a

Gaussian function,

K(«)5
1ffiffiffiffiffiffiffiffiffiffi
(2p)

p exp

�
2
1

2
«2
�
. (3)

The kernel parameters are fitted by minimizing a chosen

skill score (Jolliffe and Stephenson 2003) while avoiding

information contamination.7

The forecasts below are evaluated using the ignorance

score (Good 1952), which is defined as

S[p(y),Y]52log2[p(Y)] , (4)

where p(Y) is the probability assigned to the verification

Y. By convention the smaller the score the more skillful

is the forecast (Jolliffe and Stephenson 2003).

To contrast the skill of probability forecasts from two

forecast systems it is useful to consider the relative

ignorance. The mean relative ignorance of model 1

relative to model 2 is defined as

Srel[p1(y), p2(y),Y]5
1

F
�
F

i51

2log2

�
p1(Yi)

p2(Yi)

�

5 S[p1(y),Y]2 S[p2(y),Y] . (5)

If p2 is taken as a reference forecast, then Srel defines

‘‘zero skill’’ in the sense that p2 will have Srel 5 0.

Appropriate reference forecasts will depend on the

task at hand: they may include a static climatological

distribution, a dynamic climatology, another simulation,

or an empirical model. The relative ignorance quantifies

(in terms of bits) the additional information provided by

forecasts from one model above that of the reference. A

relative ignorance score of Srel[p1(y), p2(y), Y] 5 21

means that the model forecast places, on average,

twice (that is 21) the probability mass on the verifica-

tion than the reference forecast. Similarly, a score of

Srel[p1(y), p2(y), Y] 5 21/2 means ;41% (that is 21/2)

more probability mass on average. In section 5, the static

climatology, a persistence forecast and the DCmodel are

chosen as references to measure performance against the

ENSEMBLES simulation models. The parameters used

to construct each empirical model forecast are each es-

timated under true cross validation: the forecast target

decade is omitted from consideration.

FIG. 3. The DC over the period of the ENSEMBLES hindcasts

(Fig. 1). HadCRUT3 (from which the DC model is constructed) is

shown for comparison.

5 In chapter 10.5.4.6 of the AR4 (Solomon et al. 2007), the likely

range of global temperatures in 2100 are provided for each of

several scenarios. Each range falls ‘‘within 240 to 160% of the

multi-modelAOGCMmeanwarming simulated for each scenario’’

(Solomon et al. 2007, p. 810). Similar results are shown in Fig. 5 of

the summary for policy makers.
6Kernel dressing and blending aim to provide good probability

forecasts; this goal does not need to coincide with minimizing the

point forecast error of the ensemble mean.

7 Information contamination occurs when critical information is

used in a hindcast that would not have been available for a forecast

actually made on the same launch date. While such contamination

can never be eliminated completely if the historical data are known,

principled use of cross validation can reduce its likely impact.
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The ENSEMBLES forecast–outcome archive con-

tains at most nine forecast–outcome pairs. That is, there

are only nine forecast launch dates, each with a maxi-

mum lead time of 10 years. Outside of true out-of-

sample evaluation, it is difficult not to overfit the fore-

cast and dressing parameters used to generate proba-

bility forecasts; the details of cross validation can have

a large impact. Extending the typical leave-some-out

fitting protocol (Hastie et al. 2001; Br€ocker and Smith

2008) to include the kernel dressing procedure reduces

the sample size of the forecast–outcome archive from

eight to seven pairs. This ‘‘true leave-some-out’’ pro-

cedure (Smith et al. 2013, manuscript submitted to

Quart. J. Roy. Meteor. Soc.) will necessarily increase the

sampling uncertainty, reflected through bootstrap re-

sampling. In the case of the ENSEMBLES forecasts,

adopting a true leave-some-out procedure reduces the

apparent significance of the results; failing to introduce

such a procedure, however, risks both information

contamination and the suggestion that there is more skill

than is to be expected in the simulation models. The

most appropriate path cannot be determined with con-

fidence until additional data become available.

5. Results

The skill of each of the four ENSEMBLES decadal

prediction models has been evaluated relative to DC.

TheHadleyCentreGlobal EnvironmentModel, version 2

(HadGEM2) forecast distributions are shown as fan

charts in Fig. 4 as an example. These forecast distri-

butions tend to capture the observed global-mean

temperature, although the verification falls outside the

5th–95th percentile of the distribution more often than

the expected 10%of the time. The distributions from the

other ENSEMBLES simulation models (illustrated in

the supplementary material) produce similar results.

A set of forecast distributions for the DC model is

shown in Fig. 5. This model was launched every year

between 1960 and 2000, although only every fifth launch

is illustrated, in keeping with the ENSEMBLES forecast

launch dates. The increased number of launches for the

DC model, each with a larger ensemble, allows more

accurate statistics on its performance over the same

range of the available observational data. Forecasts

from the DC model show a similar distribution across

each forecast launch, unlike those of the ENSEMBLES

models. The verification also falls outside the 5th–95th

percentile of the DC distributions on several occasions,

similar to the distributions produced for the simulation

models.

Figure 6 shows theperformanceof all fourENSEMBLES

simulation models and the DC empirical model in terms

of ignorance as a function of lead time. To test whether

one model is systematically better than another requires

considering the relative performance directly. The ig-

norance of each model is computed relative to the static

climatology shown in Fig. 7. True leave-some-out cross

validation is applied throughout. When the relative ig-

norance is less than zero, the model has skill relative

to the static climatology. If the bootstrap resampling

intervals of a model overlap zero, the model may be

less skillful than the static climatology. In fact none of

the simulation models consistently outperform the

DC empirical model, which has among the lowest ig-

norance scores. Figure 6 shows that the DC model

significantly outperforms the static climatology across

all lead times, on average placing approximately twice

FIG. 4. Forecast distributions for HadGEM2 (UKMO) for the

5th–95th percentile. The HadCRUT3 observed temperatures are

shown in blue. The forecasts are 10 years long and launched every

5 years, and so the fan charts would overlap; to avoid this they are

presented in two panels: forecasts launched in 10 years intervals

from (top) 1960 and (bottom) 1965.

FIG. 5. As in Fig. 4, but for every fifth launch from the DC model.
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the probability mass on the verification (Srel ’ 21.0).

The DC model using only launch dates every fifth year

(to introduce a sampling uncertainty comparable to

those of the ENSEMBLES model forecasts) shows

a similar result but with slightly larger bootstrap

resampling intervals as expected. For each of the

ENSEMBLES models variations in skill between fore-

casts (for a given lead time) prevent the establishment of

significant skill relative to the static climatology, de-

spite the fact that both the Integrated Forecast System

FIG. 6. Ignorance as a function of lead time for each of the four ENSEMBLES hindcast

simulationmodels and theDCmodel relative to the static climatology. The bootstrap resampling

intervals are illustrated at the 10th–90th percentile level. The DC model is shown to be signifi-

cantly more skillful than static climatology at all lead times, whereas the ARPEGE4/OPA and

IFS/HOPE models are significantly more skillful than static climatology at early lead times.

FIG. 7. Probability density for the static climatology used in the paper with observations over

the period 1960–2010 (from HadCRUT3) illustrated as dots on the x axis for reference.
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(IFS)/HamburgOceanPrimitiveEquationModel (HOPE)

and Action de Recherche Petite Echelle Grande Echelle

(ARPEGE4)/Oc�ean Parall�elis�e (OPA) models consis-

tently produce relative ignorance scores below zero at

most lead times. The HadGEM2 and ARPEGE4/OPA

models, however, indicate that significant skill relative

to static climatology can be established for early lead

times. It is no surprise that the DC model performs

better than the static climatology, since an increase in

skill is almost certain to come from initializing each

forecast to the observed temperature value at the fore-

cast launch.

Figure 8 shows the performance of each of the models

relative to forecasts of persistence. Once again the DC

model consistently shows relative ignorance scores be-

low zero across most lead times, while the ARPEGE4/

OPAmodel scores below zero for early lead times (up to

a lead time of 5 years), suggesting that forecasts from

these models are more skillful than a persistence fore-

cast over this range. In both cases the resampling bars

cross the zero relative skill axis, clouding the significance

of the result.

The skill of the ENSEMBLES simulation model

forecasts is illustrated relative to the DC model in

Fig. 9. None of the models in the ENSEMBLES

multimodel ensemble demonstrates significant skill

above the DC model at any lead time for global-mean

temperature. In fact, all four simulation models show

systematically less skill than the DC model. Similar

results are found at smaller spatial scales (specifi-

cally the Giorgi regions; Giorgi 2002), where the DC

empirical model tends to outperform each of the

ENSEMBLES simulation models (see the supplemen-

tary material).

The ECHAM5 model generally has the least skill out

of the ENSEMBLES models, particularly for global-

mean temperature, with DC outperforming this model

by several bits at lead times of up to 10 years, although

the bootstrap resampling intervals often overlap the

zero line and also overlap with the intervals from the

other simulation models in Fig. 9. At global-mean tem-

perature scales the ARPEGE4/OPA model tends to

perform better than the other ENSEMBLES models,

perhaps surprisingly, since the raw simulation hindcasts

from ARPEGE4/OPA contain a particularly large (but

consistent) model drift relative to the other simulation

models. Models requiring empirical drift corrections are

less likely to produce realistic forecasts in a changing

climate than they are in the current climate. Over the

smaller spatial scales considered (the Giorgi regions)

the ARPEGE4/OPA model no longer outperforms the

other simulation models; no one ENSEMBLES model

FIG. 8. Ignorance of the ENSEMBLES models and DC relative to persistence forecasts as

a function of lead time. The DC model has negative relative ignorance scores up to 6 years

ahead, indicating it is significantly more skillful than persistence forecasts at early lead times.

The ENSEMBLES models tend to have positive scores, particularly at longer lead times, with

bootstrap resampling intervals that overlap with the zero skill line. The bootstrap resampling

intervals are illustrated at the 10th–90th percentile level.
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emerges as significantly better than any other (see sup-

plementary material).

The poor performance of the ECHAM5 simulation

model might at first appear as a surprise, since the en-

semble members from this model appear to be relatively

close to the target values in Fig. 1. Note, however, that

ECHAM5 initializes (and thus forecasts) model anom-

alies, not physical temperatures; the model forecasts

then yield forecast model anomalies. In this case then,

the systematic error of the model is partially accounted

for when the model forecast anomalies are translated

back into physical temperatures. The offset applied

within the kernel dressing procedure levels the playing

field by accounting for the systematic errors in the other

simulation models; the figures indicate that while

ECHAM5 may suffer less model drift because of this

process (Keenlyide et al. 2005) it does not produce more

skillful probability forecasts than the other ENSEMBLES

simulation models.

The ENSEMBLES experimental design also contains

a perturbed physics ensemble from theMetOfficeDecadal

Prediction System (DePreSys) (Doblas-Reyes et al. 2010),

in which nine perturbed physics ensemble members are

considered over the same set of hindcast launch dates. The

DePreSys simulations contain only one initial condition

ensemble member for each model version. In this case, the

offset and kernel parameters must be determined for

each model version separately and the lack of any

information on sensitivity to initial conditions limits

the practical evaluation of the perturbed physics en-

semble. The DePreSys hindcasts are therefore not con-

sidered for analysis here.

While hindcast experiments can never provide a true

out-of-sample evaluation of a forecasting system, it is

possible to deny empirical models access to data ob-

served after each launch date. In addition to the denial

of what were effectively future observations, it is also

necessary to illustrate that the skill of these prelaunch

empirical models8 does not depend sensitively on pa-

rameter tuning, as it is implausible that such tuning

could have been done in real time. The results reported

below are robust to variations in the free parameters in

the prelaunch DC model (see supplementary material).

Two prelaunch empirical models were considered.

The first is simply a direct climatology model where the

observation archive is restricted to values prior to each

launch date. The results are similar and in fact some-

times slightly better than the standard DC model.

FIG. 9. Ignorance of the ENSEMBLES models relative to DC as a function of lead time.

The bootstrap resampling intervals are illustrated at the 10th–90th percent level. Note that

the simulationmodels tend to have positive scores (less skill) than theDCmodel at every lead

time.

8Arguably our prelaunch model could be called a ‘‘simulated real-

timemodel’’; we resist this inasmuch as the ‘‘future’’ was known when

the experiment was designed, even though only the prelaunch obser-

vations were used in constructing the model. ‘‘Prelaunch’’ should be

read to imply only that the data used were restricted to those dated

before the forecast launch date; it does not imply that (the impact of)

all information gleaned since that date was somehow forgotten.
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Figure 10 shows the skill of the prelaunch DC model

with a kernel width of (s5 0.08 and 0.02) relative to the

standard DC model, constructed under cross validation;

performance is robust to decreasing this width by more

than an order of magnitude. A prelaunch trend model

was also constructed to determine if the observed skill

was due to a linear trend. The prelaunch trend model

simply extends the linear fit to the observations from

a fixed start date (e.g., 1950) to the launch date and then

uses the standard deviation of the residuals as the kernel

width. The prelaunch DC is more skillful than the pre-

launch trend model, as shown in Fig. 10. This result is

robust to changing the start date back toward 1900

(see supplementary material). It is important to stress

that this trend model is not being advocated as a candi-

date empirical model but only to address the specific

question of whether the skill of the DC model comes

only from the observed trend in global-mean tempera-

ture. Much more effective methods for estimating sta-

tistical time series models are available in this context

(see, e.g., Fildes and Kourentzes 2011).

The results presented highlight several features for

the experimental design of ensemble prediction systems

and the impact that design has for the evaluation of

probabilistic forecasts. In hindcast experiment design,

the number and type of ensemble members considered

not only impact on the resolution of the prediction

system but also on the quality of the evaluation meth-

odology: in the kernel dressing approach this impacts

the accuracy of the estimated kernel offset and spread

parameters, as well as the cross-validation procedure.

Sample size plays a major role and has consequences for

the design of experiments and their evaluation. In par-

ticular, the number of available forecasts and ensemble

members can heavily influence the significance of the

results, especially when the forecast–outcome archive is

small. Large initial condition ensembles more clearly

distinguish systematic model drift at a particular initial

state from sensitivity to small changes in that initial

state. Singleton ensembles, as in DePreSys, do not allow

such a separation. With only a relatively short forecast–

outcome archive and a small number of ensemble

members per hindcast launch, the evaluation of the

probabilistic forecasts suffers from large sampling un-

certainties. While it may not be possible to extend the

duration of the observations, increasing the ensemble

size can resolve some of the ambiguities involved in the

cross-validation stage. In the case of DePreSys, it is

suggested that future perturbed physics hindcast designs

would benefit from including initial condition pertur-

bations, as well as different model versions. Further

improvements, in terms of increasing the statistical sig-

nificance of the probabilistic evaluation, may be made

by extending the size of the forecast–outcome archive

FIG. 10. Ignorance of the prelaunch DC and prelaunch trend models relative to the standard

DCmodel as a function of lead time. TheHadGEM2model fromENSEMBLES is also shown.

It is shown that the prelaunch DC model is not significantly less skillful than the standard DC

model and is robust to variations in parameter tuning. The prelaunch linear trend model is,

however, generally shown to be less skillful than the standard DC model. The bootstrap re-

sampling intervals are illustrated at the 10th–90th percentile level.
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further into the past or where this is not possible, in-

cluding intermediate launch dates to increase the sample

size for the purpose of fitting the kernel dressing pa-

rameters.

6. Conclusions

The quality of decadal probability forecasts from the

ENSEMBLES simulation models has been compared

with that of reference forecasts from several empirical

models. In general, the stream 2 ENSEMBLES simu-

lation models demonstrate less skill than the empirical

DC model across the range of lead times from 1 to

10 years. The result holds for a variety of proper scoring

rules including ignorance (Good 1952), the proper linear

score (PL) (Jolliffe and Stephenson 2003), and the

continuous ranked probability score (CRPS) (Br€ocker

and Smith 2006). A similar result holds on smaller spa-

tial scales for the Giorgi regions (see supplementary

material). These new results for probability forecasts are

consistent with evaluations of root-mean-square errors

of decadal simulation models with other reference point

forecasts (Fildes and Kourentzes 2011; van Oldenborgh

et al. 2012; Weisheimer et al. 2009). The DC probability

forecasts often place up to 4 bits more information (or 24

times more probability mass) on the observed outcome

than the ENSEMBLES simulation models.

In the context of climate services, the comparable skill

of simulation models and empirical models suggests that

the empirical models will be of value for blending with

simulation model ensembles; this is already done in

ensemble forecasts for the medium range and on sea-

sonal lead times. It also calls into question the extent to

which current simulation models successfully capture

the physics required for realistic simulation of the Earth

system and can thereby be expected to provide robust,

reliable predictions (and, of course, to outperform em-

pirical models) on longer time scales.

The evaluation and comparison of decadal forecasts

will always be hindered by the relatively small samples

involved when contrasted with the case of weather

forecasts; the decadal forecast–outcome archive cur-

rently considered is only half a century in duration.

Advances both in modeling and in observation, as well

as changes in Earth’s climate, are likely to mean the

relevant forecast–outcome archive will remain small.

One improvement that could be made to clarify the skill

of the simulation models is to improve the experimental

design of hindcasts: in particular, to increase the en-

semble size used. For the ENSEMBLES models, each

simulation ensemble consisted of only three members

launched at 5 years intervals. Larger ensembles andmore

frequent forecast launch dates can ease the evaluation of

skill without waiting for the forecast–outcome archive to

grow larger.9

The analysis of hindcasts can never be interpreted as

an out-of-sample evaluation. The mathematical struc-

ture of simulation models, as well as parameterizations

and parameter values, has been developed with knowl-

edge of the historical data. Empirical models with

a simple mathematical structure suffer less from this

effect. Prelaunch empirical models based on the DC

structure and using only observations before the fore-

cast launch date also outperform the ENSEMBLES

simulation models. This result is robust over a range of

ensemble interpretation parameters (i.e., variations in

the kernel width used). Both prelaunch trend models

and persistence models are less skillful than the DC

models considered.

The comparison of near-term climate probability

forecasts from Earth simulation models with those from

dynamic climatology empirical models provides a useful

benchmark as the simulation models improve in the

future. The blending (Br€ocker and Smith 2008) of sim-

ulation models and empirical models is likely to provide

more skillful probability forecasts in climate services,

for both policy and adaptation decisions. In addition,

clear communication of the (limited) expectations for

skillful decadal forecasts can avoid casting doubt on

well-founded physical understanding of the radiative

response to increasing carbon dioxide concentration in

Earth’s atmosphere. Finally, these comparisons cast

a sharp light on distinguishing whether current limita-

tions in estimating the skill of a model arise from ex-

ternal factors like the size of the forecast–outcome archive

or from the experimental design. Such insights are a

valuable product of ENSEMBLES and will contribute

to the experimental design of future ensemble decadal

prediction systems.
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APPENDIX

The Stream 2 ENSEMBLES Decadal Hindcast
Experiments

The set of decadal hindcast experiments from stream

2 of the ENSEMBLES project simulations (Doblas-

Reyes et al. 2010) have a similar experimental design

to the seasonal hindcast experiments discussed in

Weisheimer et al. (2009). The decadal hindcasts consist

of a set of initial condition ensembles, containing three

ensemble members, initialized at launch, from four

forecast systems—ARPEGE4/OPA (CERFACS), IFS/

HOPE (ECMWF),HadGEM2 (UKMO), andECHAM5

(IFM-GEOMAR)—to produce a multimodel ensemble.

A perturbed physics ensemble containing nine ensemble

members from the DePreSys forecast system (based on

the HadCM3 climate model) for both initialized and un-

assimilated simulations also forms part of theENSEMBLES

project. The hindcasts span the period 1960–2005, with

simulations from each model launched at 5 years in-

tervals, starting in November of the launch year and run

over 10 years integrations. A full initialization strategy

was employed for the atmosphere and ocean using

realistic estimates of their observed states (except for

ECHAM5, which employed an anomaly initialization

scheme), with all the main radiative forcings prescribed

and perturbations of the wind stress and SST fields made

to sample initial condition uncertainty of the multi-

model ensemble.
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