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Abstract
Identifying successful ”noise reduction” as such remains a challenge in applications where the ”true” values are

not know a priori (and linear noise reduction is a game not a true task). We suggest shadowing ratios as a measure
of noise reduction when the task at hand involves prediction. Initial condition uncertainty will more or less always
limit the lead time of a chaotic model, even when that model reproduces the system dynamics perfectly. Since in
reality, observations from such systems tend to be clouded by measurement error, the maximum lead time we can
expect to accurately predict using the model will be short. Data assimilation techniques attempt to improve our
state estimates, we introduce a new measure which allows us to estimate the quality of these techniques. A model
trajectory shadows for as long as it is consistent with the noise model of the observed states. We define the shadowing
ratio as the ratio of the length of time the model shadows using the assimilated initial conditions to the length of time
the model shadows using some reference data assimilation technique. We use the measure to evaluate the effectiveness
of one assimilation technique in particular, Gradient Descent of Indeterminism (GDI). Using the Duffing Map system
as an example we first use shadowing ratios to show the effect of using different numbers of observations from the
past when applying GDI. We then compare GDI to other assimilation techniques using the measure to compare the
effectiveness from a forecasting perspective. Finally, since GDI requires derivative information from the system, we
compare the effectiveness of the algorithm when using the exact derivative matrix and when approximating using a
forward difference technique.

1 Introduction

Successful prediction of complex process has a huge value to society, particularly in areas like mete-
orology where it can affect many lives. A modeller of chaotic dynamical systems however, faces big
challenges. Even with a perfect model of the dynamics of a system, if past observations are clouded by
measurement error, accurate predictions at long lead times will be hard to achieve. Data assimilation
is the process of improving on these ”noisy” observations by attempting to recover the true trajectory.
Shadowing lengths measure how long the model trajectory stays close to reality, for a good model
prediction of the future, clearly we desire that these lengths should be as long as possible. We show
how we can use ratios of these values to compare models and in particular, assimilation techniques.

2 Shadowing

A shadowing length is time a trajectory stays consistent with the observational noise of future obser-
vations. For forecasting purposes it is desirable for these lengths of time to be as long as possible.

definition 1 A model trajectory shadows for time τι if it is consistent with the observational

uncertainty at all times t, 0 ≤ t ≤ τι.

The conditions of a trajectory shadowing observations depend on the observational noise model which
we assume to be known. For bounded noise, these condtions are straightforward, for example if the noise
model is distributed as U(−ǫ, ǫ), the noise is bounded by ǫ. Therefore, a trajectory stops shadowing
the observations at the smallest value of i such that |xi − Si| > ǫ where xi and Si are points from our
model trajectory and the ’noisy’ observations respectively.
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Figure 1: Two shadowing trajectories of the logistic map, the red lines are ’noisy’ observations with noise model
U(−0.05, 0.05), the distance between the crosses is where a trajectory is said to shadow the point. The blue line
shadows for 7 points and the green line shadows for 3 points. Where the lines are solid they shadow the observations
and when they are dashed, they don’t.

3 Shadowing Ratios

We introduce shadowing ratios as a way of comparing assimilation techniques. When choosing an
assimilation method, it is desirable that on average at least, the resulting trajectory found from feeding
initial conditions from our ’new’ method, should be able to shadow longer than the trajectory from
some reference method. Shadowing ratios give us an idea of the magnitude of these differences.

definition 2 We define a shadowing ratio as

γ =
τnew

¯τref
(1)

where τnew is the shadowing length of an individual set of initial conditions obtained using our

’new’ assimilation method and τref is the mean or median shadowing length for initial conditions

assimilated using some reference method.

When on average, γ > 1, we have an improvement on our reference method. We define each shadowing
ratio to correspond to the shadowing length of one set of assimilated noise realisations divided by the
mean or median shadowing lengths of the reference assimilation method, that way we can look at
distributions of shadowing ratios. Since shadowing lengths are likely to be skewed in distribution,
using the mean or the median shadowing length of the reference method as the denominator changes
the results fairly significantly. Each tells a slightly different story, so it is often useful to look at both.

4 Gradient Descent of Indeterminism

One particular method of data assimilation is Gradient Descent of Indeterminism (GDI). The algorithm
uses the well known optimisation method, ’gradient descent’ to reduce the indeterminism (the distance
||xi+1 − F (xi)||) of a pseudo-orbit. Iterating repeatedly, reduces the indeterminism and moves the
points asymptotically towards a system trajectory. The resulting pseudo-orbit can give us an estimate
of past and current conditions. For more information on Gradient Descent of Indeterminism, see E
Suckling and L. A. Smith (Gradient Descent for the Point Vortex model).

Figure 2: The midpoint of the assimilation window for the Lorenz ’63 system of equations showing noisy observa-
tions(red) and results of assimilation (green), the ’truth’ is the centre of the black circle. Both plots show the same
points but from a different perspective.

5 Examples

The gradient descent algorithm uses derivative information to attempt ’noise reduction’. This is not
always possible to do analytically, in these cases we can use some approximate method to estimate
the jacobian matrix, in this case a forward difference method. We can use shadowing ratios to assess
the impact of this substitution. Figure 3 shows the shadowing ratios for GDI applied to the Duffing
Map with a=2.75 and b=0.2 and white trimmed gaussian noise added with σ = 0.05, trimmed at 3
standard deviations. Our reference method here is using no assimilation and running the model from
our observations. It is hard to distinguish between the two sets of shadowing ratios and we can conclude
that a lack of gradient information makes little difference to Gradient Descent of Indeterminism.
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Figure 3: Top left: mean (blue) and median (green) shadowing ratios after assimilating using GDI with exact
(solid line) and approximate (dashed line) jacobian. Top right: The same as top left but showing shadowing lengths
instead of shadowing ratios. Bottom left: Proportion of median shadowing ratios greater than 2 (red), 4 (green) and
8 (blue). Bottom right: Histogram of median ratios using exact(blue) and approximate (red) jacobian.

Figure 4 shows shadowing ratios for a perfect and an imperfect model of the Duffing map with the
same parameter values as figure 4. Again, for our reference method we have used no assimilation. The
difference here is much more obvious and we can conclude that Gradient descent has a much larger
effect on shadowing lengths for the perfect model than the imperfect model.
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Figure 4: Top left: mean (blue) and median (green) shadowing ratios for a perfect model (solid line) and an
imperfect model (dashed) of the Duffing Map. Top right: The same as top left but showing shadowing lengths
instead of shadowing ratios. Bottom left: Proportion of median shadowing ratios greater than 2 (red), 4 (green) and
8 (blue). Bottom right: Histogram of median ratios with perfect(blue) and imperfect (red) models.

6 Conclusion

In the context of forecasting, the choice of data assimilation is not a trivial choice, shadowing ratios
provide us with a logical way of comparing such techniques in that they will alway choose the one
which makes the model trajectory close to reality for as long as possible.
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