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Introduction 
The insurance industry exposes itself annually to losses from 
hurricanes. To date the most costly year was 2005 when 
hurricanes Katrina, Rita and Wilma  caused insurance losses of 
USD83bn (source, Swiss Re Sigma). Seasonal weather forecasting 
methods are becoming more sophisticated [1] and the time may 
eventually come when useful forecasts can be made about 
possible landfall events in the coming year. It is likely that the skill 
and capabilities of these forecasts will increase over the coming 
decades. This paper seeks to investigate whether ‘limited 
information forecasts’ are of use to a hypothetical insurer and 
how allowance for climate trends affects profitability.  The paper 
notes that, with very deep uncertainty, it is very difficult to 
distinguish between an underwriter who is good or just lucky.  

Key messages 
• A (very) simple model of hurricane risk and pricing was 
used to  illustrate the impact of forecasting information; 
 
• Some of the results are likely to be an artefact of the 
pricing method.  Other methods are being investigated and 
conclusions may change;  
 
• A simple line size scaling method performed best over the 
pricing approaches tested; 
 
• Complex pricing methods tend to pass the benefits to 
policyholders and return lower expected profits if applied 
without adjustment; 
 
• An underwriter who is pricing correctly still has a very 
high probability of returning a less than average return in 
their career; 
 
• An underwriter who is pricing incorrectly still has a 
reasonable probability of appearing to provide a decent 
return over their whole career; 
 
• Forecasting information is valuable, but not as much as 
you might think. Residual uncertainty for extreme events is 
very large and dominates results in the medium term; 
 
• Insurance Regulators, Trade Press, Investment analysts 
and Companies must work hard to avoid being fooled by 
randomness. [4] 

Experimental design 

Results – stationary climate 

For a hurricane to cause a major loss the following has to occur: 
(1) a hurricane forms; (2) it makes landfall; (3) it is intense, and 
finally; (4) the landfall location occurs where exposure density is 
high (i.e. it hits a major urban or commercial centre).  This is 
illustrated in figure 1. 
The basic simulation examined in this paper is as follows: 
• Simulate the number NB of hurricanes that form in the North 
Atlantic Basin;  
• Simulate the number NL|NB of these that make landfall;  
• Simulate the number NC|NL of these which hit a major city or 
commercial centre;  
• Simulate the saffir simpson strength of each storm that makes 
landfall (see table 2 for assumed proportions) assume this is 
independent to landfall location,  
• Uniformally sample NC of these, which are deemed to be the 
city hits, assume a 1-1 correspondence between strength of a city 
hit and financial loss.  Assume losses arise of S1, S2,… SNC – see 
table 2;  
• Calculate the Premium charged P ;  
•Calculate the insurance (underwriting) profit as 

As expected, profits are made in the majority of years, with a few 
years with small losses (i.e. negative profits), and a tiny fraction 
with very material losses. 
 
The figure below shows the various premium levels that arise 
under the pricing variants (grey). The average premium level is 
also shown (black).  Note that the average premium for variants 
3,4 and 5 are all lower than the control (P0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 shows the impact on underwriting profit.  This was 
initially surpassing.  The methods with more information did 
worse!  However, once you realise that the reduced variance is 
passed straight to the policyholder through lower prices, this 
becomes clear. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The work assumes that insurers hold capital in addition to 
reserves to be able to survive extreme events.  I have adopted UK 
regulation so that estimated annual aggregate losses with 1in 200 
probability must be survived.  The impact of ever more 
information on capital is subtle and varies from method to 
method.  In the simple setting modelled the 1 in 200 year 
aggregate losses do not necessarily increase when the number of 
basin hurricanes or landfalls increases.  Hence the risk goes up in 
jumps.  However the premium does rise monotonically as the 
number of storms increases and hence capital actually falls when 
the premium is rising faster than the risk only to jump up again 
when the losses “catch up”.  We see a saw tooth picture in terms 
of capital held. 
 

  
 
  
  
 
 
 
 
 
 
 

Parameters 

The following subsections describe various pricing methods which 
were  investigated. These are all based on the work of Rodney 
Kreps [2] they do not pretend to be actual pricing methods used 
by individual insurers and reinsurers which are likely much more 
sophisticated. They do, however, capture the essence of pricing:  
the the insurer aims to cover expected losses and provide a 
return on capital to its investors that is consistent with the size of 
the risk taken on. 

Pricing methods 

Naïve Pricing:  Ignore all forecasts 

Results – non stationary climate 
In this section I investigate the impact of a non-stationary climate 
(as supported by the evidence).  I assume the 1995-2010 period is 
a proxy for "current"  levels of risk.  This leads to a shift in the 
proportion of storms of different strength as shown in table 2. 
 
I assume that generation frequency NB is not changed despite 
good reasons to assume that it has increased - because I want to 
focus on shifting strength.  I also assume the landfall proportion is 
fixed.  Emmanuel [3] has shown that the PDI has increased in 
recent times - from his work I have assumed a 40% overall 
increase in potential destructiveness.  The change in severity 
frequency (table 2, column C) accounts for 16% of this - so an 
additional uplift of 24% is applied to the severity table (table 2 – 
column D).  This is done in such a way to only slightly increase the 
cat 4,5 storms on the presumption that they are already close to 
maximally destructive.   
 
A naive company that does not recognise the climate trend still 
makes a profit 84.6% of the time - though its expected profits are 
almost halved.  The Naive company will go insolvent twice as 
often as a company pricing correctly - so the policyholder bears 
the brunt of their mistake - but pays lower premiums until this 
happens. 
 

Variant 1: Generation Frequency known approximately - 
reduce line size.    P1=P0 +/- 10% according to season 
strength f. 
 

Variant 2: Generation Frequency known approximately - 
adjust premium rate  

Variant 3: Generation Frequency known accurately  

Variant 4: Landfalling Frequency known accurately  

Variant 5 Severity (or “Potential Loss” PL) known 
approximately and 5b (adj line size +/10%)  

Table 1: Hurricane model 

Table 2: Severity and loss model 

Figure 1:  Hurricane model 

Figure 2:  Range of premium rates 

Figure 3:  Profitability levels 
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Process
Variable 

name
Distribution Parameter

Frequency of generation NB Poisson(λ)  λ = 7  
Landfall number  NL|NB Binomial(NB, q) q = 0.24
City Hit number NC|NL Binomial(NL, c) c = 0.25
Kreps reluctance 30%

Exposure/Premium scalar β1,β2,β3,β4 10%

Saffir Simpson

Proportion 
(1955-2010) 
Stationary 

%

Assumed 
loss 

(Stationary) 
USD bn

Proportion 
(1995-2010) 

Non-
stationary  %

Assumed 
loss (Non-

stationary) 
USD bn

(A) (B) ( C ) (D)
1 38.2 1.0 34.8 1.4
2 24.7 3.0 25.1 5.0
3 28.4 15.0 28.7 22.0
4 6.2 70.0 8.8 75.0
5 2.5 130.0 2.6 132.0
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