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1 Introduction

In a pollution-constrained economy where polluting companies are subject to environmental reg-

ulations that cap their noxious emissions, each firm faces a basic choice of two main abatement

alternatives: modifying the production process which generates the emissions as a by-product or

trading marketable permits.1 The latter option, also referred to as emissions trading, is a market-

based measure which is currently very popular among policy makers. In a system of marketable

permits, such as the European Emission Trading Scheme (EU ETS), relevant companies exchange

permits on the theory that trading creates economic incentives that encourage firms to minimize

the costs of pollution control to society. The chief appeal of economic incentives as the regula-

tory device for achieving environmental standards is the potentially large cost-saving that they

promise.2 The source of these savings is the capacity of economic instruments to take advantage

of large differential abatement costs across polluters. Based on such an idea, Montgomery (1972)

provides a rigorous theoretical justification of how a market-based approach leads to the efficient

allocation of abatement costs across various pollution sources. Necessary and sufficient conditions

for market equilibrium and efficiency are derived, given the setting of multiple profit-maximizing

firms who attempt to minimize total compliance costs. Theoretical aspects that Montgomery

(1972) does not discuss have been addressed by several studies, as reported in Taschini (2009).

Based on the substitution principle between emission permits and abatement technology, Ti-

etenberg (1985) and Rubin (1996) proved that, in the stylized model of Montgomery (1972), the

price of emission permits corresponds to the marginal cost of the cheapest abatement alternative.

In the context of EU ETS, which encompass CO2 emissions in the European Union, the cheapest

abatement technology that can be easily implemented in the short to medium term is the so-

called fuel-switching.3 Switching from “cheap-but-dirty” coal to “expensive-but-cleaner” gas is,

in fact, a real option for fuel-burning energy producers in Europe. In particular, gas has a lower

relative carbon intensity, i.e. CO2 emission per MWh produced. Therefore, gas-fired electricity

production emits less CO2 per MWh of electricity produced than coal-fired power generation. So,

fuel-switching from coal to gas yields a reduction of CO2 emissions per MWh of electricity and

implies less emissions to be covered by permits. Moreover, one would expect that the higher the

price of emission permits, the larger the shift toward gas-fired generation for a fixed gas price.

Our findings are in line with this expectation and with European policy makers’ expectations.

However, this calculation ignores the presence of windfall profits in the market (see Sijm et al.

(2006), Bunn and Fezzi (2007), and Zachmann and von Hirschhausen (2008)). We show that

when one internalizes the opportunity cost of CO2 emission permits this result is reversed.

1Niemeyer (1990) gives a more detailed list of abatement alternatives.
2We refer to Baumol and Oates (1988) for a complete discussion on market-based policy measures.
3Alberola et al. (2008) discuss the market mechanisms that regulate EU ETS, Fehr and Hinz (2006), Carmona

et al. (2009) and Chesney and Taschini (2008) model the permit price formation in the EU ETS framework in both
the presence and absence of existing abatement alternatives.
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As a consequence of the introduction of EU ETS, the structure of the business profitability of

this industry and the decision process about the power-generation mix have changed. Today,

fuel-burning operators in Europe decide their power generation mix incorporating market price

interactions among natural gas, coal, electricity, and CO2 permits.4 The first aim of this paper is

to develop a simple model to evaluate the value of a generation system consisting of a coal-fired

and a gas-fired power plants using a real options approach, and the notions of clean-spark and

clean-dark spreads. Our objective is to quantify how often the system operator relies on gas and

on coal over a fixed-time horizon. Second, we extend the initial set-up and model the presence

of expected windfall profits. In particular, we investigate the impact of the opportunity to pass a

fraction λ of the CO2 permit cost on the market-price of electricity assessing its likely magnitude

on the profitability of each generation unit and, consequently, on the corresponding activation

frequency.

The implementation of dark and spark-spreads in the real options contest has been adopted by

Hsu (1998), Hlouskova et al. (2005), and Laurikka (2006), among others. Dark and spark-spread

concepts have been introduced in the energy markets as market spreads between, on the one hand,

coal and electricity prices, and natural gas and electricity prices, on the other. Defining operating

profits as the difference between the fuel price per unit of electricity and the revenues from selling

that unit at the market price, the dark-spread measures the net operating profits of a coal-fired

generation unit; the spark-spread measures the net operating profits of a gas-fired generation

unit. Option contracts on these spreads have been initially implemented as financial instruments

with the scope to mitigate exposure to energy price risks. Successively, these spreads have been

proposed as evaluation instruments: computing dark and spark-spreads helps in determining the

economic value of the generation assets that are used to transform coal or natural gas into elec-

tricity. Considering a specific fuel-burning generation unit, a profit maximizer operator activates

the plant and consumes a specific unit of fuels only if the revenue of selling one electricity unit

is higher than its corresponding production cost. The opportunity of turning both plants on and

off, based on the market prices of fuels, emission permits and electricity, is a real option which

measures the flexibility that characterizes this type of industry. In the recent past, numerous

authors relied on real-options theory for assessing the magnitude of this flexibility and its impact

on the decision process of the electricity production. For instance, Fiorenzani (2006) investigates

the operational flexibilities and constraints of the refinery industry; Laurikka (2006) explores the

impact of the presence of a market for emission permits on investments in integrated gasification

combined cycle plants; Abadie and Chamorro (2009) evaluate a natural gas investment by means

4In this paper we model a pure profit maximizer energy company not subject to supply or demand constraints,
or any other type of production commitment.
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of Monte Carlo simulations.

Considering an electricity generation system consisting of coal and gas-fired power plants, we

operationalize the most natural decision criteria: the system operator runs the most profitable

plant based on the price of input (gas, coal, and CO2) and output factors (electricity). Assum-

ing a frictionless system where inactive costs are negligible, we show by means of Monte Carlo

simulations that the efficiency and carbon intensity of a plant are key components for the system

evaluation. Efficiency is represented by the so-called heat rate (Hr). The lower the heat rate

the more efficient the plant. Whether one internalizes the expected windfall profits or not, we

show that the lower the Hr of a specific plant, the higher the frequency of its activation. When

the system operator has an opportunity to pass a fraction λ of the CO2 permit cost on to the

market-price of electricity, conventional findings and expectations are reversed. Not surprisingly,

the higher λ (the higher the CO2 price level), the higher the value of the generating system. How-

ever, when we model explicitly the impact of windfall profits on electricity price and account for

different CO2 emission factors (coal has a higher emission factor than gas), we obtain a different

rate of activation frequencies. In particular, the operator relies more often on the most expensive

and polluting option: coal-generation. This is possible because passing on the opportunity costs

of a certain carbon intensity to the market-price of electricity can facilitate the operator in un-

dertaking the most expensive (and profitable) coal-burning option.

Section 2 introduces the structure of the model. In particular, we specify the stochastic processes

describing the evolution of prices of the underlying factors (coal, gas, electricity and emission

permits). Section 3 details the calibration techniques we use to fit the model to market data.

Section 4 discusses the results we obtain using Monte Carlo simulations over a twenty-year horizon.

In this section we also investigate the economic implications of the presence of expected windfall

profits. Section 5 concludes.

2 Problem formulation

In this section we describe the structure of the model that build extensively on chapter 19 of Fusai

and Roncoroni (2008). Then, we introduce the methodology we employ to assess the economic

value and the activation frequency of a generation asset consisting of a coal-fired and a gas-fired

plants that transform coal or natural gas into electricity using the most profitable process. Such

a structured electricity generation system is nothing but a compound option, i.e. an option (to

produce or not) on an option (to use coal or gas for electricity production). In particular, the

exercise payoff of this compound option involves the value of clean-dark and clean-spark options,

and an adjustment of the definition of Market Heat rate given in Hsu (1998).
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The operator of the generation system is a profit maximizer and a price taker on the input (coal,

gas and emission permits) and output (electricity) markets. As it is not the objective of our

research to solve an optimal investment-timing problem, we can assume that both coal and gas

plants are already in place. Furthermore, we assume that the costs associated with the inactivity

state of both units are negligible.5 The system operator should run a generation plant only

if it is profitable to do so. This condition is satisfied when operating profits (revenues minus

costs) are positive. As a consequence of the introduction of EU ETS, operating profits should

be adjusted to include the cost of the CO2 emitted per MWh, obtaining the so-called clean-

dark and clean-spark spreads (see Alberola et al. (2008) and references therein). Each plant

possesses a specific emission factor which depends on fuel-type and is measured in tons of CO2

emitted per MWh of electricity produced. CO2 emission factors are default values provided by

several governmental and international institutions. We use the values provided by the European

Environmental Protection Agency. As in Laurikka (2006), we analytically define clean-dark and

clean-spark spreads as:

πcd = (pe − pc · Hrc − pco2
· ec)+ and πcs = (pe − pg · Hrg − pco2

· eg)+ ,

where pe and pc (pg) are the electricity and the coal (gas) price, respectively; Hrc (Hrg) is

the heat rate of coal (gas); pco2
is the price of European CO2 emission permits and ec (eg) is

the emission factor of an average coal-fired (gas-fired) plant; and (·)+ stands for max(·, 0). When

πcd (πcs) is positive, the operator should run the coal-fired (gas-fired) plant, otherwise he should

shut it down. We assume that there are no costs entailed in turning a plant on and off. The

inclusion of constant values representing costs for operating, activating and deactivating the plant

is straightforward in the current set-up and not considered here.

The heat rate measures the efficiency of the plant and determines how much fuel is required

to produce one unit (MWh) of electricity. The lower the heat rate, the more efficient the power

plant. Typically, modern power plants are more efficient and are characterized by low heat rates.

This implies that such plants can generate more electricity while burning the same unit of fuel.

Heat rates are defined as the number of British Thermal Units (Btu) required to produce one

kWh of electricity. The most efficient coal plants achieve Hrc as low as 7,000 Btu/kWh, whereas

existing installations have Hrc equal to 11,000 Btu/kWh. The most efficient gas plants achieve

Hrg as low as 6,000 Btu/kWh, whereas old installations have Hrg exceeding 12,000 Btu/kWh.

For an easier interpretation of our results, both Hrc and Hrg range in our analysis, from 6,000 to

5An implementation of technical constraints, like rump-up times, or minimum-supply commitments would not
change our main conclusions. Letting the gas plant be more flexible than a coal plant, would shift unambiguously
upwards the likelihood magnitude of the frequency of activation of the gas plant. However, this would not reverse
the direction of the impact of expected windfall profits on the rate of activation. In any case, this type of modeling
should be addressed using more appropriate stochastic optimal control tools.
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11,000 Btu/kWh. Throughout the paper we express the price of electricity pe in e/MWh, the

price of coal pc in e/MMBtu, the price of gas pg in e/MMBtu, and the price of emission permits

pco2
in e/tonco2

. Heat rates are expressed in MMBtu/MWh. Emission factors are expressed in

terms of tonco2
/MWh. For a fixed MHrc (MHrc) and a fixed quantity of electricity produced,

the amounts of coal (gas) burned and CO2 emitted are constant. Accordingly, expressing the

electricity generation costs in terms of fuel use and corresponding CO2 emissions is straightfor-

ward. Therefore, we write πcd and πcs in terms of an adjusted version of the Market Heat rate

(MHra). The MHrac (MHrag) is defined as the ratio between the market prices of electricity and

CO2-adjusted coal (CO2-adjusted gas):

MHrac =
pe

pc(pc, pco2
)

and MHrag =
pe

pg(pg, pco2
)
,

where pc(pc, pco2
) = (pc · Hrc + pco2

· ec) is the so-called adjusted coal price, and pg(pg, pco2
) =

(pg · Hrg + pco2
· eg) is the so-called adjusted natural gas price. We refer to Guessow (2009) for

further discussion on fuel transformation rules. Based on the adjusted-MHr definition, equations

πcd and πcs can be written as:

πcd = ((MHrac − 1) · pc(pc, pco2
))+ and πcs =

((

MHrag − 1
)

· pg(pg, pco2
)
)+
.

Adjusted market heat rates now represent the underlying assets. When the adjusted market heat

rate of a plant is above 1, this generation unit is in-the-money. In particular, when MHrac > 1

(MHrag > 1) the operator should run the coal-plant (gas-plant) or, using financial terminology, he

should exercise his clean-dark spread (or clean-spark spread) option. Because we are considering a

frictionless electricity generation system consisting of two distinct generating units, the operator is

interested in running the most profitable plant when both spread options are in-the-money. This

extra flexibility-layer is properly described using the definition of a compound option. Evaluating

the generation system as a compound option, we capture the simultaneous opportunity to use

coal or gas when both the clean-dark spread and the clean-spark spread are positive. In our

framework, the compound option πg is:

πg(pc, pg, pco2
) = max

[

((MHrac − 1) · pc(pc, pco2
))+ ,

((

MHrag − 1
)

· pg(pg, pco2
)
)+

]

, (1)

Relying on the definition of operating profits given above, the clean-dark (clean-spark) spread

measures the net operating profits of a coal-fired (gas-fired) generation unit where fuel prices are

CO2-adjusted. This definition will be relevant in the next section where we discuss model results.

Relying on the methodology used by Fiorenzani (2006), an evaluation of a generation system

can be decomposed into an evaluation of a strip of European clean-dark and clean-spark spreads
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options. In particular, a coal-plant (gas-plant) corresponds to a portfolio of European call options

written on coal (natural gas) and electricity spot prices. This contingent-claim approach allow

us to match the value of a generation system over a fixed time horizon, with a finite sum of

expected discounted payoffs. The payoff at each instant t, t ∈ [0, T ] is described by equation (1).

Such an evaluation requires one to specify the stochastic dynamics of underlying price processes,

i.e. adjusted coal price, adjusted natural gas price, and electricity price. Figure 1 shows the non-

CO2-adjusted (upper diagram) and CO2-adjusted (lower diagram) log-prices of the API-2 coal

forward contracts (balance of the month) and the Zeebrugge gas price (day ahead contract) from

October 2005 to June 2009.6
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Figure 1: The daily log-price of API-2 coal and Zeebrugge gas during the period October 2005
- June 2009. Upper diagram reports non-CO2-adjusted log-prices; lower diagram reports CO2-
adjusted log-prices.

Following standard literature in commodity modeling, we assume that coal and natural gas

log-prices follow two distinct mean reverting processes with a linear trend and a constant volatility

6The data base on API-2, Zeebrugge gas and French electricity from Essent Trading - Geneva (CH) is gratefully
acknowledged. The data set includes daily prices.
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term.7 In particular, the log-price of coal follows:

dpc(t) = θc(µc(t) − pc(t))dt+ σcdW c(t), where µc(t) = αc + βct (2)

and the log-price of gas follows

dpg(t) = θg(µg(t) − pg(t))dt+ σgdW g(t), where µg(t) = αg + βgt. (3)

pc(t) and pg(t) are the log-prices of coal and gas at time t, respectively; θ measures the speed of

adjustment to the linear trend µ(t); and σ is the instantaneous and constant volatility parameter.

Following Geman and Roncoroni (2006), we assume the log-price of electricity follows a Markov

jump-diffusion process.8 This model is able to capture most of the stylized features of electricity

prices: mean reversion towards a seasonal trend and presence of spikes. Figure 2 shows the log-

price (average of day ahead electricity hourly prices) of French electricity from October 2005 to

June 2009.
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Figure 2: The log-price of day ahead French electricity from October 2005 to June 2009.

The dynamics of the log-price of French electricity are then described by the following stochas-

tic differential equation:

dpe(t) = [µe(t)′ + ϑ1(µ
e(t) − pe(t

−))]dt+ σedW e(t) + h(pe(t
−))dJ(t) (4)

where µe represents the seasonal trend and µe(t)′ = ∂µe(t)/∂t ; ϑ1 is the mean reversion

speed; and σe is the constant instantaneous volatility parameter. The trend µe combines a linear

7As reported in Geman (2005), mean-reverting processes (or Ornstein Uhlenbeck processes) have been employed
for modeling standard commodities, such as oil, copper and gold. We refer to Abadie and Chamorro (2008) and
Cartea and Williams (2008) for further discussions about model selection for coal and gas.

8For a comprehensive analysis about alternative methods for electricity price modeling, we refer to Weron (2006)
and Benth et al. (2008).
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trend and an annual and semi-annual seasonality component:

µe(t) = α+ βt+ γ cos(ǫ+ 2πt) + δ cos(ζ + 4πt)

where α is a constant coefficient; βt is the linear trend; and the last two terms represent a yearly

and six-month periodic component with possible different magnitudes. The second component

represents the diffusion part of the process. The last component accounts for the presence of spikes

in the log-price path of electricity. In particular, the counting process N(t) and the compound

Poisson process J(t) =
∑N(t)

i=1 Ji define jumps occurrence. An intensity function

ι(t) = ϑ2 ·
[

2

1 + | sin[π(t− τ)/k]| − 1

]

steers the jump occurrence once a year (k = 1) with a peak during summertime (τ = 0.5).9

ϑ2 represents the expected maximum number of jumps per year. Jump sizes are modeled by a

sequence of i.i.d. truncated exponential variables with density:

p(Ji ∈ dx;ϑ3, ψ) =
ϑ3e

−ϑ3x

1 − e−ϑ3ψ

where 0 6 x 6 ψ and ψ represent the maximum size of absolute price changes in the logarithmic

scale. Finally, the function h defines a switch for the jump direction:

h(pe(t
−)) =

{

+1 if pe(t) 6 µe(t) +∆

−1 if pe(t) > µe(t) +∆

This means that if the electricity price is above a threshold ∆ then the next jump will be in

a downward direction and vice-versa.

Based on the specification of the stochastic dynamics of the underlying log-price processes, we

can evaluate the value of the generation asset at time s as the sum of a finite number of compound

options:

Vs(πg(t)) =
T

∑

t=s

Es

[

ert·tπg(t)(pc(t), pg(t), pco2
(t))

]

=
T

∑

t=s

Es

[

ert·tπg(t)
]

(5)

Time spans 20 years, 250 days per year. We use a daily time-unit, this implies T = 5, 000 days.

We assume the term structure of the discount rate rt is a strictly increasing function of time. In

particular, rt starts from an arbitrary 5.05 percent and reaches 5.45 percent after 20 years. The

9This is a desirable feature when one models the U.S. electricity market, as in Geman and Roncoroni (2006),
but maybe this is not the most realistic model for European electricity markets. However, our main objective
is the analysis of the impact of expected windfall profits on the activation of the generation system, and not the
identification of the model which best fits our electricity data. Therefore, we do not investigate alternative models
here.
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use of different values would not affect our results. We also assume, for the sake of simplicity, that

the discount factor rt and the underlying processes are statistically independent.10 We account

for the presence of correlation between the underlying fuel processes and the electricity process.

However, we neglect correlation between coal and natural gas.11 Let ǫe, ǫc, and ǫg be three

independent standard normal random variables and let ρe,c (ρe,g) be the constant correlation

coefficient between electricity and coal (gas). We then employ the Cholesky decomposition to

specify the Brownian increments in equations (2), (3) and (4) as:



















σedW e(t) = σeǫe(t)
√
dt

σcdW c(t) = σc
(

ρe,c · ǫe(t) +
√

1 − ρ2
e,cǫc(t)

)

·
√
dt

σgdW g(t) = σg
(

ρe,g · ǫe(t) +
√

1 − ρ2
e,gǫg(t)

)

·
√
dt

Sijm et al. (2006), Bunn and Fezzi (2007), and Zachmann and von Hirschhausen (2008), among

others, find empirical evidence of cost pass-through of CO2 emission permits prices on the elec-

tricity price in several European markets.12 This phenomenon has been identified as windfall

profits. By definition, windfall profits occur when an entrepreneur enjoys profits in excess of

what he expected, usually as the result of a drastic change in market conditions. Because the

use of emission permits represents an opportunity cost for the operator of the generation system,

the pass-through of a fraction λ of the price of CO2 permits is not totally unexpected.13 In order

to internalize the opportunity cost in the evaluation methodology, we enrich the dynamics of the

log-price of electricity as follows:

dpe(t) = [µe(t)′ + ϑ1(µ
e(t) − pe(t

−))]dt+ σedW e(t) + h(pe(t
−))dJ(t) + γdpCO2

(t) (6)

where the first three components are already specified in equation (4). The last component ac-

counts for the opportunity to pass the costs of emission permits through to the electricity market.

Figure 3 shows the log-price of CO2 futures emission permits with maturity December 2009 from

October 2005 to June 2009.14

10In the standard real options approach to investment under uncertainty, agents formulate optimal policies under
the assumptions of risk neutrality or complete financial markets. Similarly, we assume that the market is complete
and account for agents risk aversion using a weighted average cost of capital as discount factor rt, see Dixit and
Pindyck (1994).

11As it is not the objective of our research to predict optimal activation times by analyzing the statistical
relationships of the input factors, we do not account for the presence of correlation between coal and gas.

12Current literature still provides ambiguous results on this issue. For instance, Nazifi and Milunovich (2009)
suggest that the dynamics of energy prices are rather independent from the price of carbon emissions permits.

13This holds regardless of the allocation criteria of the emission permits (grandfathering, auction, etc.)
14The choice of this type of contract is justifiable by the fact that emission permits are a so-called non-standard

commodity. Fuel burning utilities, for example, do not physically need the emission-right to produce and, therefore,
to pollute on a daily base. Also, transaction volumes of CO2 futures contracts are fairly larger than CO2 spot
contracts.
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Figure 3: The daily log-price of futures emission permits with maturity December 2009, from
October 2005 to June 2009.

We assume the log-price of emission permits follows a geometric Brownian motion:

dpCO2
(t) = µCO2

dt+ σCO2dWCO2(t) (7)

where µCO2
and σCO2 are respectively the constant instantaneous drift term and the volatility

parameter. By incorporating explicitly the CO2 permit price, we extend the previous valuation

of the generation asset and investigate the impact of expected windfall profits on the operator’s

activation decision. In order to do that, we also specify the Brownian increments in equations

(7) as:

σCO2dWCO2(t) = σCO2

(

ρe,CO2
· ǫe(t) +

√

1 − ρ2
e,CO2

ǫCO2
(t)

)

·
√
dt

where ǫCO2
is a standard normal random variable independent from the previous standard normal

random variables; and ρe,CO2
is the constant correlation coefficient between electricity and the

CO2 price of emission permits. The evaluation of the operator’s activation decisions based on

equation (5) is in section 4.

3 Data and Parametrization techniques

Our data set contains coal, gas, electricity and emission permits daily prices. For coal we used

the API#2 balance of the month coal forward contract quoted in $/ton and which we converted

to e/MMBtu. For the gas price we took the Zeebrugge spot series which are quoted in pence/th

and converted to e/MMBtu. We adjusted the gas and coal prices for the emission permits price

using default IPCC emission factors from the 2006 IPCC Guidelines for National Greenhouse Gas

Inventories. For electricity we use French power spot prices which are quoted in e/MWh. The

ECX-traded EUA futures with maturity 2009 are quoted in e/ton CO2. All data series span the

time interval from October 5, 2005 to June 19, 2009 (excluding week-ends and holidays).
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The parameters of the mean reverting processes (2) and (3), and of the geometric Brownian

motion (7) are calibrated by maximum likelihood. Table 1 reports parameters’ estimation.

Gas Coal EUA

α 2.01 1.57
β -0.06 0.07
θ 6.11 0.50
σ2 1.80 0.09 0.24
ρe,· 0.18 -0.002 0.01
µ 2.99

Table 1: Estimated parameters for the coal and natural gas price processes. ρ is the constant
correlation coefficient between prices of electricity and · = {coal, gas,CO2permits}.

The estimation of (4) is based on Geman and Roncoroni (2006). We first filtered out all prices

that exceed a threshold determined by the 90-percentile of the sample price distribution. We

then estimated the parameters of the trend and the seasonal components (two sinusoids with a

yearly and a 6-month periodicity) by OLS. The jump part is disentangled by the rest identifying a

threshold Γ . We calibrated the model with different values for the threshold Γ and selected the set

of parameters that delivers the best moment-matching. As in Fusai and Roncoroni (2008), instead

of assuming that volatility is constant, we let it be time-dependent with σ2(t) = σ2
0+a cos2(πt+b).

The mean reversion parameter ϑ1, the jump size parameter ϑ3 and the parameters σ2
0, a and b are

estimated by maximum likelihood. We refer to Geman and Roncoroni (2006) for a comprehensive

description of estimation procedures. Table 2 reports the estimated parameters for the electricity

log-price process.

Before estimating the correlation parameters ρ between the de-trended electricity and fuel prices,

we filtered out the electricity price variations that are above the threshold Γ . Also, the discount

factor used in (8) has a linear increasing structure. In particular, we assume it goes from from

0.0505 to 0.0543 over a twenty-year period.
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Without dpCO2
(t) with dpCO2

(t)

α Average level 3.84 1.41
β Long-run linear trend 0.04 0.1
γ Magnitude of yearly trend -0.20 -0.27
ǫ Phase of yearly trend 2.19 1.93
δ 6-months magnitude 0.07 0.06
ζ 6-months phase 3.32 3.02
η Regression coefficient 0.78

K Jump periodicity 1 1
τ Jump time shift 0.5 0.5
θ2 Mean expected number of jumps 10.59 10.59

θ3 1/average jump size 0.3 0.3
ψ Max. jump size 1.57 1.57
∆ Threshold 1.75 1.75
Γ Jump size threshold 0.51 0.51

Average jumps per year 12.47 12.47
Mean jump size 0.72 0.72

σ2 Constant volatility 7.52 7.69
a Magnitude of periodic variance 7.77 9.7
b Phase of periodic variance 0.24 0.23
θ1 Mean reversion speed 40.88 1.07

Table 2: Parameters for the electricity spot price process.

4 Model Results

In this section we investigate the operator’s activation decision based on the profitability of each

plant that constitutes the generation system. By simulating 5.000 price-paths for CO2-adjusted

coal, CO2 adjusted gas, and electricity, we first evaluate the coal-plant value, the gas-plant value,

and their frequency of activation using equation (5) in the absence of CO2 cost pass-through.

In this framework, Monte Carlo simulations are based on equations (2), (3) and (4). Table 3

reports the value of the generating system V0(πg(t)), the gas plant V0(πcs(t)), and the coal plant

V0(πcd(t)). The last two values correspond to a situation where the operator runs just one type

of generation unit. As anticipated in section 2, the compound option πg measures the extra

flexibility layer of the generation system, i.e. V0(πg(t)) ≥ {V0(πcd(t)), V0(πcs(t))}. As Figure 4

also shows, the lower the heat rates, the higher the value of the generation system. This result is

in line with our expectations.

Table 4 reports the corresponding frequencies of activation (FA) of the generation system, the

gas plant and the coal plant. As expected, the less efficient the plant, the lower the activation

frequency. Moreover, in absence of expected windfall profits, the system operator relies more on

the gas plant than on the coal plant.
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Heat Rate Gas Heat Rate Coal System value Gas plant Coal plant

6 6 115,460 112,960 61,269
6 11 113,200 112,980 25,523
11 6 97,220 85,839 61,572
11 11 88,416 86,066 25,925

Table 3: Value of a generation asset consisting of a coal and a gas fired plants (System value);
Value of a stand alone gas plant; and value of a stand alone coal plant under varying heat rates.
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Figure 4: Value of a generation asset under varying heat rates.

Heat Rate Gas Heat Rate Coal FA plant FA Gas FA Coal

6 6 0.493 0.44 0.05
6 11 0.487 0.48 0.004
11 6 0.473 0.34 0.13
11 11 0.441 0.40 0.03

Table 4: Frequency of activation (FA) of a generation system (plant), a gas plant, and a coal
plant under varying heat rates.
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As discussed in section 2, utilities can pass through a fraction λ of the opportunity costs of CO2

emission permits in the electricity market. In order to investigate how expected windfall profits

affect the operator’s activation decision, we compute the expected value in equation (5), running

Monte Carlo simulations based on equations (2), (3) and (6), but where the parameters of the

electricity price are the those in the fourth column of Table 2. The results we obtain are consistent

with our expectations. Fixing the price of CO2 emission permits, the higher λ, the higher also is

the value of the generation system. Similarly, fixing the level of λ, the higher the price of CO2

emission permits, the higher is the value of the generation system. These results are reported in

Table 5 and shown in Figure 5. Again, the compound option πg measures the extra flexibility

layer of the generation system, and V0(πg(t)) ≥ {V0(πcd(t)), V0(πcs(t))}.

λ CO2 permit price System value Gas plant Coal plant

0 5 21,601 21,484 3,150
0 25 21,680 21,560 3,182
0 65 21,679 21,562 3,220
0 85 21,548 21,437 3,126

0.25 5 24,930 24,516 4,928
0.25 25 27,232 26,793 6,498
0.25 65 29,113 28,423 7,935
0.25 85 29,702 28,916 8,213

0.75 5 33,128 31,534 10,597
0.75 25 45,166 41,616 23,171
0.75 65 56,592 48,858 35,331
0.75 85 60,171 50,796 39,142

1 5 38,427 35,651 15,033
1 25 59,334 50,803 38,937
1 65 83,054 63,129 64,442
1 85 90,689 66,431 72,958

Table 5: Value of a generation asset consisting of a coal and a gas fired plants (System value), a
stand alone gas plant, and a stand alone coal plant under varying λ and CO2 emission permits
price. We assume coal and gas heat rates are both equal to 8 MMBtu/MWh.

Now we can answer the question about how the pass-through of the opportunity cost of the

CO2 emission permits affects the operator’s activation decision and, therefore, the profitability

of each generation unit. Table 6 reports the frequency of activation of the generation system,

the coal plan and the gas plant. Fixing the price of CO2 emission permits, the higher λ, the

higher (lower) the activation frequency of the coal (gas) plant. Similarly, fixing the level of λ, the

higher the price of CO2 emission permits, the higher (lower) the activation frequency of the coal

(gas) plant. This result is consistent with the fact that different generation technologies produce

different levels of CO2 emissions, and therefore the opportunity cost of CO2 emissions per MWh

differ as well. Figure 6 shows that for λ > λ∗(CO2), where λ∗(CO2) is a threshold level for a
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Figure 5: Value of a generation system under varying λ and CO2 emission permits price.

fixed CO2 emission price, the frequency of activation of the gas plant decreases. Similarly, for

CO2 > CO∗
2(λ), where CO∗

2(λ) is a threshold level for a fixed λ, the frequency of activation of the

gas plant also decreases. The coal generation is now more profitable and, therefore, the operator

of the system activates the coal plant more frequently.
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Figure 6: Frequency of activation of gas plant (top) and of coal plant (bottom) under varying λ
and CO2 emission permits price.
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λ CO2 permit price FA plant FA Gas FA Coal

0 5 0.215 0.212 0.003
0 25 0.215 0.212 0.003
0 65 0.215 0.212 0.003
0 85 0.215 0.211 0.003

0.25 5 0.229 0.221 0.008
0.25 25 0.237 0.228 0.009
0.25 65 0.244 0.231 0.013
0.25 85 0.247 0.233 0.014

0.75 5 0.272 0.236 0.022
0.75 25 0.289 0.243 0.046
0.75 65 0.311 0.235 0.075
0.75 85 0.315 0.231 0.084

1 5 0.215 0.240 0.032
1 25 0.316 0.230 0.085
1 65 0.345 0.207 0.138
1 85 0.351 0.198 0.154

Table 6: Frequency of activation (FA) of a generation system (plant), a gas plant, and a coal
plant under varying λ and CO2 emission permits price.

5 Conclusions

The EU ETS is a cap-and-trade scheme that allows utilities to achieve compliance by modifying

the production process or trading emission permits. This is a market-based scheme and electricity

generators can either use their permits to cover their CO2 emissions resulting from the production

of electricity or sell these permits on the market. So, the use of emission permits represents an

opportunity cost that, in line with economic theory, should be added to the electricity price.

Such an expected amount corresponds to the windfall profits identified by several recent papers.

The presence of expected windfall profits raises the question of how they affect the profitability

of a generation plant and its activation. As different generation technologies produce different

levels of CO2 emissions and, therefore, different opportunity costs, we address such a question

modeling a generation system that consists of a coal-fired and a gas-fired plants. First, we show

that the higher the plant efficiency, the higher the value of the generation asset, regardless of the

pass-through of the opportunity cost of CO2 emission permits. Second, if we do not account for

such an opportunity cost, then the higher the heat rates, the lower the activation frequency of

the generation system. In passing, it may be noted that the rate of reduction of the activation

frequency of the coal plant is higher than that of the gas plant. Finally, we show that internalizing

the opportunity cost and modeling the log-price of CO2 emission permits, decreases (increases) the

rate of activation of the gas (coal) plant for large λ and large log-price of CO2 emission permits.

Therefore, this paper deals with a topic that is relevant not only for the energy industry, but

might also provide important results for changes in the design of the EU ETS or policy decision
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takers.
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