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Abstract

We examine the relationship between contemporaneous fine particulate matter exposure and COVID-19
morbidity and mortality using an instrumental variable approach based on wind direction. Harnessing
daily changes in county-level wind direction, we show that arguably exogenous fluctuations in local air
quality impact the rate of confirmed cases and deaths from COVID-19. In our preferred high dimensional
fixed effects specification with state-level policy and social distancing controls, we find that a one µg/m3

increase in PM 2.5 increases the number of confirmed cases by roughly 2% from the mean case rate in a
county. These effects tend to increase in magnitude over longer time horizons, being twice as large over
a 3-day period. Meanwhile, a one µg/m3 increase in PM 2.5 increases the same-day death rate by 3%
from the mean. Our estimates are robust to a host of sensitivity tests. These results suggest that air
pollution plays an important role in mediating the severity of respiratory syndromes such as COVID-19,
for which progressive respiratory failure is the primary cause of death, and that policy levers to improve
air quality may lead to improvements in COVID-19 outcomes.
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1 Introduction

As of September 2020, the 2019 novel Coronavirus has claimed over 870,000 lives globally. The total number

of confirmed Coronavirus cases has soared to 26.3 million. Since the start of the outbreak, unemployment

has increased and economic production decreased. Local governments are still defining the best strategies

for relaunching economic activity while minimizing the number of additional cases and deaths. A trade-off

exists between the speed at which economic activity is reopened and the risk of further cases and deaths.

Our paper expands the policymaker’s toolkit by adding one more dimension to this trade-off: contem-

poraneous air pollution exposure. PM 2.5 has been associated with many of the co-morbidities that relate

to poor prognosis and death in COVID-19 patients, including lung and cardiovascular disease. PM 2.5

may therefore contribute to COVID-19 severity, thus increasing demand for testing, due to worsened symp-

toms, as well as mortality. We show that decreases in contemporaneous pollution are linked to decreases

in confirmed COVID-19 cases and mortality. Our empirical approach uses plausibly random daily changes

in wind direction to predict air pollution levels, providing quasi-experimental evidence of the effect of PM

2.5 exposure on COVID-19 outcomes (Luechinger, 2014; Deryugina et al., 2019; Anderson, 2020). In our

preferred high dimensional fixed effects specification with state-level policy and standard social distancing

controls from Unacast cell phone data, we show that a one µg/m3 increase in PM 2.5 increases the number

of confirmed cases by roughly 2% from the mean case rate in a county, where confirmed cases are likely

to be a measure for severe cases, given that in the case of COVID-19 many infected people do not show

symptoms (Day, 2020; Gandhi et al., 2020; Persico and Johnson, 2020). In absolute terms, this represents 0.7

additional confirmed cases in a county on any given day. In the three-day period following a perturbation

in air quality, the relationship between fine particulate matter exposure and cases is over twice as large.

Meanwhile, a one µg/m3 increase in PM 2.5 increases the same-day death rate by 3% from the mean, or

between 0.005 and 0.006 additional deaths per 100,000 individuals in a county. These results are in line with

the medical literature, which points to progressive respiratory failure as the primary cause of death from

COVID-19 (Ackermann et al., 2020), as well as an older literature in economics showing the immediacy of

the relationship between exposure to pollution and potential death (see Currie et al., 2014).

Our paper contributes to several strands of literature. To start, we contribute to recent research that

associates past exposure to fine particulate matter with COVID-19 mortality (e.g., Wu et al., 2020). Our

paper expands our knowledge on the relationship between particulate matter and COVID-19 mortality in two

important ways. First, it focuses on current exposure to particulate matter. The contemporaneous dimension

is crucial because policymakers have control over current pollution levels but not over past exposure to air

pollution. Second, identification relies on plausibly exogenous variation in wind direction à la Deryugina
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et al. (2019), which allows us to causally link particulate matter with COVID-19 outcomes in a nationwide

study for the United States, covering virtually all polluting sources. Hence, we generalize previous findings

showing that changes in air pollution from recent regulatory changes affecting Toxic Release Inventory sites

can have an impact on number of deaths and confirmed cases of COVID-19 (Persico and Johnson, 2020).

Further, our study contributes to a growing literature showing detrimental effects of air pollution on a wide

range of outcomes, such as infant mortality (e.g., Chay and Greenstone, 2003; Chay et al., 2003; Currie and

Neidell, 2005; Knittel et al., 2016), birth weight (e.g., Currie and Walker, 2011), dementia (e.g., Bishop et al.,

2018), contemporaneous and long-run education outcomes (e.g., Lavy et al., 2012; Sanders, 2012; Ebenstein

et al., 2016) and other measures of productivity (e.g., He et al., 2019). Among the many outcomes that have

been studied (see also Currie et al., 2014; EPA, 2019), non-infant mortality has been largely neglected, with

only a handful of studies covering it (such as Chay et al., 2003; Chen et al., 2013; Deschênes et al., 2017;

Deryugina et al., 2019). Our paper contributes to fill this gap. Further, it adds to the growing body of work

illustrating the short-term effect of pollution on health outcomes, including the relationship between days

of exposure to pollution and mortality (e.g., Arceo et al., 2016; Simeonova et al., 2018; Deryugina et al.,

2019; Anderson, 2020). Overall, we contribute to the literature on pollution and health by showing that

air pollution, and in particular fine particulate matter, also plays an important role in the management of

deadly infectious diseases such as COVID-19, whose impacts have dramatically affected many cohorts in

society, and that these effects emerge very rapidly. Finally, our study contributes to an emerging literature

on the economics of the COVID-19 pandemic, aiming at identifying the best possible responses to the current

emergency (see Brodeur et al., 2020 for a review). Compared to other studies in the literature, the approach

used in this paper has also the advantage of addressing potential measurement error in COVID-19 outcomes.

Our findings have important policy implications. From the contemporaneous relationship between PM

2.5 and COVID-19 morbidity and mortality, it follows that keeping current pollution at low levels may have

an immediate payoff in that it may allow for fewer additional cases and deaths when reopening the economy.

Policymakers have a wide range of policy levers available to reach this goal, as discussed in Section 6.

The remainder of the paper is organized as follows. Section 2 describes our data. Section 3 introduces our

empirical methods and identification strategy. Section 4 presents our main empirical results. Section 5 con-

firms these results based on a battery of robustness tests. Section 6 illustrates our main policy implications.

Section 7 concludes.
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2 Data

This paper uses daily information about the COVID-19 outbreak, pollution levels, wind, and social distancing

behavior at the county level from January 22nd to August 15th. We also use state-level information on policies

adopted to curb the spread of the virus. Our data is limited to the contiguous United States and counties

with an EPA air quality monitoring station. In the following sections, we describe data sources and the

construction of the final database.

Table 1: Summary Statistics

Mean S.E. Min Max

County-Level Air Pollution
Weigthed PM 2.5 6.772 4.610 0.000 357.300
Air Quality Index 27.334 14.746 0.000 335.500

County-Level Coronavirus Cases and Deaths
Rates of new cases per 100k people 6.394 15.533 0.000 609.652
Daily count of new cases 34.938 149.755 0.000 7198.000
Rates of new deaths per 100k people 0.189 0.831 0.000 62.826
Daily count of new deaths 1.179 9.586 0.000 1553.000

State-level Policies
Limiting Mass Gatherings 0.347 0.476 0.000 1.000
Social Distancing 0.347 0.476 0.000 1.000
Stay at Home, Quarantine, or Lockdown Orders 0.268 0.443 0.000 1.000
School Closures 0.256 0.437 0.000 1.000
Policies to Increase Testing 0.420 0.494 0.000 1.000
Policies to Close State Borders 0.148 0.355 0.000 1.000
Policies to Clean Public Surfaces 0.130 0.336 0.000 1.000
Curfew 0.039 0.193 0.000 1.000
Information Campaigns 0.537 0.499 0.000 1.000
Declaration of State of Emergency 0.531 0.499 0.000 1.000
Administrative Task Force Created 0.411 0.492 0.000 1.000
Policies to Increase Access to PPE 0.284 0.451 0.000 1.000
Policies to Increase Healthcare Resources 0.389 0.487 0.000 1.000

County-Level Social Distancing Information
Change to average distance traveled from baseline -0.136 0.178 -0.830 1.080
Change to visits to non-essential locations from baseline -0.205 0.394 -1.000 14.956
Rate of unique human encounters per sq km relative to baseline 3.503 60.439 -1.000 5675.082
2-week lagged average change in distance traveled from baseline -0.134 0.164 -0.761 0.719
2-week lagged average change in visits from baseline -0.202 0.371 -0.967 11.705
2-week lagged average rate of human encounters 3.397 51.185 -1.000 4268.316

County-Day Observations 112,553
County Observations 622

Reported statistics are at the county-day level. Note that only counties with air pollution monitors are included.
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Figure 1: New Confirmed COVID-19 Cases and Deaths in the United States
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Notes: Cases and deaths sourced from the Johns Hopkins COVID-19 Data Repository. Smoothed average calculated with

seven lead and seven lag days.

2.1 Coronavirus Cases and Deaths

The Johns Hopkins University Center for Systems Science and Engineering provides mortality and caseload

information for the study.1 It offers a web-based data repository available since January 22nd, developed for

researchers, public health authorities, and the general public to track the outbreak. The platform reports

raw daily caseload and death figures for each county in the United States and has arguably become the

standard source of data for cases and deaths in the growing COVID-19 literature. The number of cases

and deaths registered in the United States is based on the reports of the Center for Disease Control and

Prevention (CDC) and various local health authorities. Summary statistics are presented in the second panel

12019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE.
https://github.com/CSSEGISandData/COVID-19. Last accessed, September 2, 2020.
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Figure 2: New Confirmed Cases per 100,000 People by US County

(a) February (b) March

(c) April (d) May

(e) June (f) July

Notes: Cases and deaths sourced from the Johns Hopkins COVID-19 Data Repository.
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of Table 1, while Figure 1 and Figure 2 present the development of new cases or deaths across the United

States over the sample period. The first of these figures represents the pattern of new confirmed cases over

the course of the outbreak, illustrating the late March and June waves of contagion in the United States.

Figure 2 represents the geographic spread of the disease in each month of the outbreak. In this figure, we

depict the total monthly rate of new cases per 100,000 people at the county level from February (Figure 3(a))

to July (Figure 3(f))2. Our data reflects the well-known pattern of contagion across the United States, with

increasing cases in the Northeast by March and then a spread to new hot spots in the southern and western

regions by June.

2.2 Fine Particulate Matter

Fine particulate matter or PM 2.5 indicates a combination of particles with diameter of 2.5 micrometers

or less, such as nitrates, sulfates, ammonium, and carbon. PM 2.5 found in a given area can be either

produced locally or transported from other areas, with transported PM 2.5 being a large share of total PM

2.5. Wind direction is one of the factors influencing transported PM 2.5 (Muller and Mendelsohn, 2007;

Deryugina et al., 2019). We source fine particulate information from the EPA’s daily outdoor air quality

information, AirNow.3 Monitoring stations with available data from January to August 2020, and their

density by county, are represented in Figure 3. We aggregate monitor air quality information to the county-

day level. In counties with more than one monitoring station, air quality data is weighted by the number

of people in census blocks in a 10 kilometer buffer around the station. Following Deryugina et al. (2019),

the EPA’s air quality monitors are classified into 100 clusters based on their location; these clusters are

represented in Figure 4. Summary statistics are presented in the first panel of Table 1. Figure 5 maps the

mean daily concentration in each month across US counties. We also show the trend in fine particulate

matter levels and air quality index over the course of the pandemic in Figure 6. This figure shows that,

contrary to media portrayals, air pollution levels have remained generally constant over the course of the

pandemic. In addition to PM 2.5 concentrations, AirNow reports Air Quality Index (AQI), which we use as

an alternative air quality measurement for robustness analysis.

2In terms of weeks since the first nontravel–related COVID-19 case, Figure 2 panel (a) represents the new cases during
the first week of the outbreak, panel (b) new cases during weeks 2 to 5, (c) weeks 4 to 10, and weeks 18 to 22 in panel (f).

3https://www.epa.gov/outdoor-air-quality-data/download-daily-data. Last accessed, September 2, 2020.
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Figure 3: EPA’s Air Quality Monitors

Notes: Each dot represents an EPA air quality monitor reporting PM 2.5 in 2020.

Figure 4: EPA Air Quality Monitor Clusters

Notes: Each color represents one of 100 air quality monitor clusters. These clusters are grouped according to the location of

the stations following the strategy proposed by Deryugina et al. (2019).
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Figure 5: Fine Particulate Mean Daily Concentration by Month and County

(a) February (b) March

(c) April (d) May

(e) June (f) July

Notes: For each county, the value for each month is calculated by averaging the daily concentration of PM 2.5, weighted by

the number of people in census blocks in a 10 kilometer buffer around the station.

9



2.3 Wind Speed and Direction

We incorporate information on wind speed and direction from the National Oceanic and Atmospheric Ad-

ministration’s daily weather monitors.4 The data includes weather variables for 2,543 weather stations.5

Figure 7 presents the spatial distribution and density of weather stations. Weather stations have different

reporting frequencies. To address these differences, all reported variables are first aggregated to the station-

hour level and then averaged to the station-day level. Among other weather variables, NOAA’s stations

report information on wind direction and speed.6 Wind direction, measured in degrees, is re-coded as sug-

gested by Deryugina et al. (2019) such that the daily mean wind direction is grouped into four categories

(1o-90o, 91o-180o, 181o-270o, and 271o-360o). Wind speed is reported in miles-per-hour but is re-coded into

ten dummy variables representing deciles of the speed distribution. We consider three strategies in assigning

NOAA wind direction information to either EPA air quality monitors or to the county. For our main specifi-

cations, each EPA air quality monitor uses a weighted average of the wind direction (in degrees) of the four

nearest weather monitors, which approximates a simple Inverse Distance Weighting (IDW) interpolation as

employed by Deryugina et al. (2019).7 On the other hand, the wind speed data is averaged at the county-day

level. We explore the sensitivity of our results to this wind-to-air quality assignment mechanism in Section

5 and more specifically Table A6 and Table A7.

2.4 Social Distancing Metrics

The data company Unacast creates social distancing records by county using cell phone information (Unacast,

2020).8 We use three relevant variables created by Unacast: change to average daily distance traveled from

pre-COVID baseline, change to average daily visits to non-essential locations from pre-COVID baseline, and

change to average daily encounters per square kilometer from baseline. Change to average distance traveled

is a z-score difference in mean distance traveled for all cell phones in a county from the average traveled

distance on the same weekday in a pre-COVID period (March 8th or earlier). The second indicator, change to

average daily visits, controls for essential movements by distinguishing between essential and non-essential

facilities.9 As with change to average distance traveled, changes to visitations are reported as z-scores.

4https://www.ncei.noaa.gov/data/local-climatological-data/archive/2020.tar.gz. Last accessed, September 2, 2020.
5NOAA reports 2,820 monitoring stations between January and August of 2020. After limiting the stations to the con-

tiguous United States, the number reduces to 2,543.
6The data also includes information on weather conditions such as precipitation and temperature. Because these variables

are frequently missing, we do not include them as controls in our analysis.

7Therefore, the assigned wind direction for EPA station i at time t (DIRit) is given by DIRit =

∑4

j=1
wjDIRjt∑4

j=1
wj

, where

DIRjt is the wind direction of the jth nearest weather monitor at time t, and wj = (dij)−1 is the weight of the jth monitor
based on the distance between i and j (dij).

8See https://www.unacast.com/. Last accessed, September 2, 2020.
9Unacast categorized “essential” based on states’ guidelines. Essential locations include facilities like food stores, pet

stores, and pharmacies, while non-essential facilities include restaurants, department and clothing stores, spas and hair sa-
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Figure 6: Air Quality During the Pandemic

Notes: Figures plot average county-level fine particulate matter or air quality index on each date. County-level figures de-

rived by averaging values over all monitors reporting on any given day.

Figure 7: NOAA Wind and Weather Monitoring Stations

Notes: Each dot represents a weather station reporting wind speed and direction in 2020.
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Finally, the rate of encounters captures person-to-person contact. Since Unacast’s underlying cell phone

data do not identify if two people have met, they define person-to-person contact as each time two users are

within 50 meters of each other for 60 minutes or less. This value is then normalized by the counties’ area (in

square kilometers) and compared to a national baseline defined as the average encounters for a pre-outbreak

period (February 10th to March 8th).10 In all regression specifications, we use the average of all daily values

from the previous 2-week period as control variables. Summary statistics are presented in Table 1.

2.5 State-Level Policy Adoption

We use the COVID-19 Government Response Event Dataset (CoronaNet v1.0) via Safegraph to control for

adoption of aversive policy behavior by state governments (Cheng et al., 2020).11 The full list of policies in-

cludes limiting mass gatherings, social distancing actions, stay at home or quarantine orders, school closures,

testing initiatives, state border closures, public surface cleaning, curfews, information campaigns, state of

emergency declarations, administrative task forces, policies to provide greater access to personal protective

equipment, and other policies to increase access to healthcare resources (such as respirators). For each

county, we create indicator variables equal to one if the policy has started and has not yet ended. Summary

statistics are presented in Table 1.

3 Methods

We follow Deryugina et al. (2019) in instrumenting for air pollution with local wind direction, with the

aim of identifying the effect of acute exposure to air pollution on our outcomes of interest. Let PM2.5iswt

represent the average PM 2.5 concentration in county i, state s, week of the outbreak w, and day t. yiswt

is the health outcome of interest; these outcomes include the daily rate of confirmed COVID-19 cases per

100,000 population, the raw daily count of COVID-19 cases, the rate of confirmed COVID-19 deaths per

100,000 population, and the raw daily count of COVID-19 deaths. We also explore the same case and death

outcomes over 3-day, 7-day, 10-day, and 14-day periods. Consider the following two stage least squares

regression equation:

PM2.5iswt =
∑
g∈G

∑
b=0

βg
b 1[Gi = g] ∗DIR90b

it +X ′γ + ηi + ηsw + νiswt (1)

lons between others. See https://www.unacast.com/post/unacast-updates-social-distancing-scoreboard for more detail on
Unacast’s methodology. Last accessed, September 2, 2020

10For more detail on the indicator’s origin and the methodology followed by Unacast, see
https://www.unacast.com/post/rounding-out-the-social-distancing-scoreboard. Last accessed, September 2, 2020

11https://www.coronanet-project.org/download.html. Last accessed, September 2, 2020.
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yiswt = φPM2.5iswt +X ′γ + ηi + ηsw + εiswt

In Equation 1, DIRit represents four wind direction dummies indicating whether average wind direction

falls into one of four 90o quadrants for county i on day t.12 As in Deryugina et al. (2019), variable 1[Gi = g]

is an indicator function asserting that county i belongs to wind monitor group g in the set of all wind

monitor clusters G. Our excluded instruments are the full interaction of wind monitor clusters with wind

direction dummies, or 382 interaction terms. Intuitively, the β coefficients capture how a wind direction and

locality combination influences average PM 2.5 levels in a county on the same day.13 Aside from the excluded

instruments, Equation 1 includes the term X for a suite of time-varying controls for state-level COVID-19

mitigation policies, day of the week, nine county-level dummies for wind speed categories, two lagged wind

direction-by-monitor cluster interactions, and prior 2-week averages of Unacast social distancing metrics

based on cell phone data. Unacast social distancing variables are the change in average distance traveled

from county-level baseline, change in visits from baseline, and change in the rate of human encounters per

square kilometer. We incorporate lagged 2-week averages for these variables to control for behavior over the

relevant incubatory period of COVID-19.14 εistw is a random error term clustered at the county level. The

coefficient of interest in Equation 1 is φ, an estimate of the relationship between an additional µg/m3 of PM

2.5 and cases or deaths from COVID-19.

Equation 1 incorporates county and state-by-week fixed effects, ηi and ηsw.15 These fixed effects control

for time-constant county-level heterogeneity and time-varying state-level characteristics.16 Due to the nature

of the spread of a contagion, the state-by-week fixed effects are best suited for controlling for the evolving

baseline infection rate in a local population, endogenous responses to the infection rate, and the ways in

which underlying heterogeneity may interact with these dynamics. Intuitively, these fixed effects allow

us to ask how better or worse air quality impacts the severity of the COVID-19 outbreak while taking a

ceteris paribus approach with respect to local characteristics, infection rate, and behaviors. For the purpose

12We omit the wind direction dummy representing 271o-360o.
13For example, a wind direction is allowed to influence air pollution in the Chesapeake Bay region differently than the

same wind direction in the San Francisco bay region.
14We note that social distancing behavior over the previous two-week period may potentially be correlated with air qual-

ity. We take this theoretical possibility seriously and test the sensitivity of our results to alternative specifications in which
we alter the control variables in our model, as shown in Table A2 and Table A3. We further discuss this potential issue in
Section 5.

15To this end, we use the Stata command ivreghdfe (Correia, 2016).
16The use of state-by-week fixed effects, or within-week comparisons, imply that we are not investigating how air quality

affects the speed of transmission of the virus but rather how air quality affects the severity of illness among already-infected
individuals. Confirmed cases are expected to represent more severe cases, for which infected individuals experience symp-
toms and seek testing (Day, 2020; Gandhi et al., 2020). We do not expect air pollution to change the threshold of pain and
symptoms leading individuals to seek testing, but rather to increase the number of people whose pain and symptoms exceed
such threshold. We also note that identifying the speed of transmission is beyond the scope of our paper. The often-lengthy
incubation period, testing lags, and reporting lags mean that our estimation procedure does not identify the speed of trans-
mission.
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of comparison, we also show results with county and metropolitan statistical area-by-week or combined

statistical area-by-week fixed effects specifications.17

In line with Deryugina et al. (2019), the identifying assumption is that, after flexibly controlling for

the above-mentioned variables, county-level variation in daily wind direction is unrelated to variation in

morbidity and mortality in the same county, if not through variation in air pollution. Moreover, identification

requires that our wind direction by monitor cluster instruments strongly predict local air pollution.18 Hence,

this empirical approach provides quasi-experimental evidence of the effect of air pollution, instrumented by

changes in wind direction, on health outcomes, while addressing common issues identified in the literature

such as measurement error from various sources.

4 Results

4.1 COVID-19 Cases

Contemporaneous exposure to air pollution may influence the severity of illness, thereby increasing the

number of severe cases. Table 2 shows our primary results on confirmed cases across a range of fixed effects

specifications. In columns (1) through (3), we show the relationship between PM 2.5 and case rates per

100,000 individuals in a county. Columns (4) through (6) regress wind-fitted PM 2.5 on case totals. In

column (1), we find that an increase of one µg/m3 of fine particulate matter in a county will increase the

number of confirmed cases per 100,000 population by 0.13. This is roughly a 2% increase from the mean case

rate per county on a given day. In columns (2) and (3), we show that this increase is roughly constant at

0.12 and 0.11 when adopting MSA-by-week or CBSA-by-week fixed effects. In our regressions on total cases

in columns (4) through (6), a one unit increase of PM 2.5 in a county results in 4-5 additional cases within a

county on the same day. These estimates reflect larger percent changes from the mean than those observed

on case rates, and they are consistent across fixed effects specifications. However, our point estimates are

less-precisely estimated in regressions on case totals.

We quantify the magnitude of these findings in two ways. First, the within-county standard deviation

of average daily PM 2.5 over our sample period is 3.6 µg/m3. Therefore, a wind-induced shift in PM 2.5

of one standard deviation would be expected to increase cases in any given county by at least 6% from the

17In each of these specifications, counties that are not in an MSA or CBSA are assigned state-by-week fixed effects. For
example, a county and MSA-by-week fixed effects specification would make within-MSA, within-week comparisons for MSAs,
while rural regions would be compared to other non-MSA regions in the same state and week. To avoid over-fitting, any
MSA or CBSA with only one county is also assigned the state-by-week fixed effect.

18As in Deryugina et al. (2019), we compute F statistics assuming first-stage errors are not serially correlated. We have
also computed the F statistics assuming serially correlated first-stage errors. As in Deryugina et al. (2019), F statistics com-
puted assuming serially correlated errors are substantially larger than those we report. In either case, both computation
methods yield F statistics above 10.
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Table 2: Wind and PM 2.5 IV: Confirmed COVID-19 Cases

(1) (2) (3) (4) (5) (6)
Rates Rates Rates Totals Totals Totals

PM 2.5 0.131*** 0.115*** 0.108** 5.361 4.068 5.051
(0.0506) (0.0413) (0.0421) (5.263) (4.109) (4.470)

F Stat 14.79 15.04 14.97 14.78 15.03 14.96
Dep Var Mean 6.356 6.356 6.356 34.170 34.170 34.171
Pct Change Mean 2.063 1.803 1.707 15.690 11.906 14.781
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 107,171 107,154 107,160 106,968 106,951 106,957

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. Controls include state-level

policy adoption, wind speed dummies, social distancing information, day-of-week dummies, and two lagged wind direction-

by-monitor cluster interactions. Regressions on counts use county population as analytic weights. Displayed output of a two

stage-least squares regression model with county and state-by-week, MSA-by-week, or CBSA-by-week fixed effects in which

wind direction and location interactions are used to predict PM 2.5 levels in a county on a given day. Fitted pollution values

are then used to predict county-level COVID-19 cases. F statistics computed assuming first-stage standard errors are not

serially correlated.

mean. Second, we estimate the approximate change over the support of wind-induced PM 2.5 shifts. We

incorporate four wind-direction dummies. Within any county, the wind direction associated with lowest PM

2.5 levels has an average PM 2.5 level of 4.9 µg/m3; the second is 5.9, third is 6.9, and the highest wind

direction is associated with mean PM 2.5 level of 7.9 µg/m3. These categories illustrate that any given

county has wide variation in PM 2.5 levels associated with wind direction, ranging an average of 3 µg/m3

from lowest to highest wind direction-pollution combination. Therefore, any given county would be expected

to see at least 5% more confirmed cases on the worst wind-pollution combination days in comparison to the

best ones, or at least a 1.7% increase in confirmed cases from even a slight step up in PM 2.5 associated

with a marginal change in wind direction. For comparison, Persico and Johnson (2020) found that a one

unit increase in fine particulate matter led to an approximate doubling of confirmed cases and deaths. The

effects in Persico and Johnson (2020) are induced by regulatory rollback of pollution control at Toxic Release

Inventory sites. Because these sites release many harmful pollutants other than fine particulate matter, it

seems reasonable that the magnitude of their findings would be higher than those we observe. Further,

populations especially exposed to pollution from Toxic Release Inventory sites may be more vulnerable for

a variety of reasons, including past exposure to the many harmful pollutants released at those sites. Persico

and Johnson (2020) analyze heterogeneous effects along standard socioeconomic dimensions and find worse

pollution exposure for counties with a higher fraction of Black individuals, with higher unemployment, and

with lower incomes. Our approach allows isolating the effect of PM 2.5 while inferring from a much broader
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set of pollution sources, thus generalizing previous results. A wide set of policy implications follow from our

empirical findings, which we discuss in Section 6.

Table 3: Wind and PM 2.5 IV: Confirmed COVID-19 Cases across 1, 3, 7, 10, and 14 Day Periods

(1) (2) (3) (4) (5)
Same Day 3-Day Total 7-Day Total 10-Day Total 14-Day Total

Case Rate per 100,000

PM 2.5 0.131*** 0.296** 0.167 0.368 0.434
(0.0506) (0.120) (0.252) (0.365) (0.528)

F Stat 14.79 14.57 14.27 14.75 14.65
Dep Var Mean 6.356 19.135 45.102 64.903 91.753
Pct Change Mean 2.063 1.547 0.371 0.567 0.473
Controls
County & State-by-Week FEs
Observations 107,171 105,297 101,766 99,276 96,077

Case Totals

PM 2.5 5.361 23.22 52.54 79.30 110.8
(5.263) (16.56) (40.57) (60.22) (86.65)

F Stat 14.79 14.56 14.26 14.74 14.65
Dep Var Mean 34.170 103.317 245.147 354.298 503.644
Pct Change Mean 15.690 22.476 21.432 22.383 22.002
Controls
County & State-by-Week FEs
Observations 106,968 105,098 101,575 99,091 95,900

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. Controls include state-level

policy adoption, wind speed dummies, social distancing information, day-of-week dummies, and two lagged wind direction-

by-monitor cluster interactions. Regressions on counts use county population as analytic weights. Displayed output of a two

stage-least squares regression model with county and state-by-week fixed effects. Column (1) regresses wind-induced fine par-

ticulate matter on the number of cases on the same day. Column (2) regresses fine particulate matter on the number of cases

over the same day and the following two days. Column (3) regresses fine particulate matter on the number of cases over the

same day and the following nine days. Column (4) regresses fine particulate matter on the number of cases over the same day

and the following thirteen days. F statistics computed assuming first-stage standard errors are not serially correlated.

Further, we show how air pollution impacts the number of cases over the following 3, 7, 10, and 14 day

periods in Table 3. For concision, we show only specifications with county and state-by-week fixed effects.19

In column (1), we see our previous result that a one µg/m3 increase in PM 2.5 increases the case rate by

0.13 and the total cases by 5.4 on the same day. Column (2) of the table suggests that a one unit increase in

fine particulate matter in a given county is expected to increase the number of cases per 100,000 by 0.3 over

the following three day period. While this effect in magnitude is over twice as large, it is a smaller percent

increase relative to the mean 3-day combined case rate at 1.5%. Meanwhile, the same one unit increase

19All additional estimations are available by the authors upon request.
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would be expected to increase the case rate by 0.17 over a seven day period, 0.37 over a ten-day period

and by 0.43 over a two week period. It seems reasonable that the magnitude of the findings would increase

over longer time horizons, as a given exposure to pollution may lead the severity of cases to increase over

several days, and testing or reporting lags may further delay the time of confirmation. At the same time,

our estimates tend to become noisier over longer time horizons. In the second panel of Table 3, we observe

a similar increasing relationship between PM 2.5 and confirmed cases when our outcome is total cases. The

relationship between a one unit increase in PM 2.5 and confirmed cases over three days is 23, four times

higher than the magnitude of our same-day estimations. Over two weeks, the relationship increases to 111

additional confirmed cases per unit of PM 2.5, or a 22% increase from the mean 2-week case total.

4.2 COVID-19 Deaths

Table 4 displays point estimates for the relationship between levels of fine particulate matter and confirmed

COVID-19 deaths. As in Table 2, columns (1) through (3) display results on death rates per 100,000

individuals, while columns (4) through (6) show the relationship between PM 2.5 and death totals. The

point estimate in column (1) suggests that an additional unit of wind-induced PM 2.5 would raise the same-

day death rate from COVID-19 by 0.006. This is a 3% increase from the mean daily death rate within

a county of 0.18. This coefficient is generally stable when adopting MSA-by-week or CBSA-by-week fixed

effects in place of the state-by-week fixed effects, as displayed in column (2) and column (3). Meanwhile, our

estimates in columns (4) through (6) suggest that a one-unit increase in PM 2.5 would increase the absolute

death count by 0.07 - 0.09, or roughly a 7% increase from the mean number of COVID-19 deaths in a county

on any given day. For comparison, the cross-sectional estimates in Wu et al. (2020) suggest, if taken at face

value, that a µg/m3 increase in average historical exposure to PM 2.5 is associated with an 8% increase in

the rate of deaths from COVID-19.

Finally, consistent with Deryugina et al. (2019), we examine the relationship between exposure to an

additional unit of PM 2.5 and COVID-19 deaths over longer time horizons. The corresponding estimates are

provided in Table 5. For death rates, we show that the relationship remains roughly constant at 0.006 for up

to three days, but then we observe no discernible relationship between exposure to PM 2.5 and death rates

over 7, 10, and 14 day periods. Conversely, we observe a slightly increasing relationship between exposure

to PM 2.5 and death totals over up to two week periods, with a single unit of PM 2.5 exposure increasing

two-week death counts by approximately 2 individuals per county, an 11% increase from the mean two-week

county death rate of 17. Our results suggest that a county would have 33% fewer deaths if wind came

from the least-polluted direction for two weeks, in comparison to itself if wind came from the most-polluted
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Table 4: Wind and PM 2.5 IV: Confirmed COVID-19 Deaths

(1) (2) (3) (4) (5) (6)
Rates Rates Rates Totals Totals Totals

PM 2.5 0.00566* 0.00576* 0.00490 0.0819 0.0727 0.0941
(0.00343) (0.00346) (0.00341) (0.209) (0.187) (0.186)

F Stat 14.79 15.04 14.97 14.78 15.03 14.96
Dep Var Mean 0.181 0.181 0.181 1.141 1.141 1.141
Pct Change Mean 3.123 3.176 2.703 7.181 6.368 8.248
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 107,171 107,154 107,160 106,968 106,951 106,957

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. Controls include state-level

policy adoption, wind speed dummies, social distancing information, day-of-week dummies, and two lagged wind direction-

by-monitor cluster interactions. Regressions on counts use county population as analytic weights. Displayed output of a two

stage-least squares regression model with county and state-by-week, MSA-by-week, or CBSA-by-week fixed effects in which

wind direction and location interactions are used to predict PM 2.5 levels in a county on a given day. Fitted pollution values

are then used to predict county-level COVID-19 deaths. F statistics computed assuming first-stage standard errors are not

serially correlated.

direction for two weeks.

5 Robustness Tests

In this section, we assess the sensitivity of our results to a battery of alternative specifications. We proceed

as follows. First, we re-examine our relationship of interest when replacing PM 2.5 with EPA’s Air Quality

Index as independent variable. Second, we test the sensitivity of our results to inclusion of different time-

varying daily controls. In particular, we show how our results compare when dropping social distancing

metrics. Third, we drop New York City, which may be considered a special case in the context of the

COVID-19 epidemic. Fourth, we compare our instrumental variable approach to estimations using Ordinary

Least Squares. Fifth, we explore alternate mechanisms for assigning wind and weather information to air

quality monitors.

AQI vs. PM 2.5: We use PM 2.5 as our primary independent variable to represent air pollution, although

a variety of air pollutants contribute to air quality. We therefore also test our primary regression specification

with EPA’s Air Quality Index (AQI) as the independent variable. As with PM 2.5, we construct this variable

by population-density weighting AQI measures when more than one monitor is present in a county. The

results are presented in Table A1. In all regression specifications, the relationship between AQI and COVID-
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Table 5: Wind and PM 2.5 IV: Confirmed COVID-19 Deaths across 1, 3, 7, 10, and 14 Day Periods

(1) (2) (3) (4) (5)
Same Day 3-Day Total 7-Day Total 10-Day Total 14-Day Total

Death Rate per 100,000

PM 2.5 0.00566* 0.00591 -0.00861 -0.0115 -0.0132
(0.00343) (0.00602) (0.0125) (0.0162) (0.0206)

F Stat 14.79 14.57 14.27 14.75 14.65
Dep Var Mean 0.181 0.544 1.278 1.832 2.582
Pct Change Mean 3.123 1.086 -0.674 -0.627 -0.511
Controls
County & State-by-Week FEs
Observations 107,171 105,297 101,766 99,276 96,077

Death Totals

PM 2.5 0.0819 0.400 0.308 0.716 1.916
(0.209) (0.515) (1.065) (1.378) (1.864)

F Stat 14.79 14.56 14.26 14.74 14.65
Dep Var Mean 1.141 3.441 8.156 11.771 16.707
Pct Change Mean 7.181 11.621 3.778 6.080 11.467
Controls
County & State-by-Week FEs
Observations 106,968 105,098 101,575 99,091 95,900

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. Controls include state-level

policy adoption, wind speed dummies, social distancing information, day-of-week dummies, and two lagged wind direction-

by-monitor cluster interactions. Regressions on counts use county population as analytic weights. Displayed output of a two

stage-least squares regression model with county and state-by-week fixed effects. Column (1) regresses wind-induced fine par-

ticulate matter on the number of deaths on the same day. Column (2) regresses fine particulate matter on the number of

deaths over the same day and the following two days. Column (3) regresses fine particulate matter on the number of deaths

over the same day and the following nine days. Column (4) adopts a dependent variable of the number of deaths on the same

day and the following thirteen days. F statistics computed assuming first-stage standard errors are not serially correlated.

19 morbidity and mortality is of the same sign and similar statistical significance as the relationship between

PM 2.5 and COVID-19 morbidity and mortality. For case rates, the relationship is actually much more

precisely estimated across all fixed effects specifications, although death rate point estimates have slightly

less statistical significance. The magnitude of the point estimates, however, are consistent across PM 2.5

and AQI if not slightly larger for AQI. For example, we see that a one unit increase in AQI in a county

would lead to a 0.6% increase in case and a 0.8% increase in death rates. Scaling these by the mean AQI,

which is four times as large as the mean PM 2.5, results in similar shifts from PM 2.5 in the range of 2%

and 3%, respectively. The fact that the magnitude is of similar range, if not slightly larger, makes sense, as

fine particulate matter is not the only harmful air pollutant that may exacerbate COVID-19 outcomes.
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Inclusion of Different Time-Varying Controls: Our primary regressions control for state-level policies

to control the spread of COVID-19, wind speed dummies, past 2-week average social distancing information,

day of the week, and two days of lagged wind-direction combinations. In Table A2, we show how our

primary results differ when subsets of controls are used. In columns (1) and (5), we show how our results

differ when no controls are adopted. Coefficients for case rates and counts, as well as death rates and counts,

are all less-precisely estimated. Point estimates for case or death rates are much smaller than our primary

estimates or statistically indistinguishable from zero, although estimates for case or death totals are similar,

even larger, than our primary estimates. When adding day of week, wind speed dummies, and lagged wind

direction interactions, our results for case and death rates are larger and more precisely-estimated, achieving

statistical significance for case rates and near significance for death rates. Incorporating either state-level

policies or social distancing controls, in columns (3), (4), (7), and (8), very slightly improves the precision

of our estimates in most specifications. However, the magnitude of the point estimates remains roughly

constant across all specifications. If anything, this evidence compounds that provided in Deryugina et al.

(2019) on the validity of wind direction as an instrument for air pollution.

With respect to case rates and death rates, inclusion of past 2-week average social distancing controls

slightly elevates our point estimates, while case counts and death counts appear unaffected. In Table A3,

we test how our primary results differ when excluding all past 2-week average social distancing metrics.

Point estimates are similar in all models, although we note that slight attenuation does occur in most

specifications. Hence, we conclude that our approach is able to capture the main effect of interest, even

if past 2-week average social distancing behavior may be correlated with pollution through two channels,

avoidance behavior (Graff Zivin and Neidell, 2009; Neidell, 2009; Deschênes et al., 2017) and the fact that

past social distancing behavior may generate less pollution.

Drop New York City: The first major outbreak of COVID-19 in the continental United States occurred

in the metropolitan region surrounding New York City, a large and heavily-populated zone with unique

characteristics with respect to its outbreak intensity, COVID-19 response, and pollution levels. In Table A4,

we test whether our results differ when excluding this region from the sample.20 In virtually all specifications,

our results are larger in magnitude and more precisely estimated when excluding New York City. With the

exception of death counts, we observe highly statistically significant relationships between an additional

unit of PM 2.5 and each outcome. For example, in column (1), we observe that an additional unit of PM

2.5 increases case rates per 100,000 individuals by 0.15, a 2.4% increase. In comparison, our estimations

including New York City showed an increase of 0.13 cases, or a 2% increase. The increase in case counts is

20We exclude the counties or boroughs of Nassau, Westchester, Queens, Manhattan, Brooklyn, and the Bronx. Corre-
sponding FIPS codes for these regions are 36059, 36119, 36081, 36061, 36047, and 36005.

20



now 6-7 additional confirmed COVID-19 cases per unit of PM 2.5. Though still statistically insignificant,

these point estimates are more precisely estimated than our results including New York City. Meanwhile,

the increase in the death rate, now highly significant, is 0.009 instead of 0.006 per 100,000 individuals, a 5%

increase instead of a 3% increase. Regressions on total deaths, previously a statistically insignificant 0.08 or

7% per additional unit of PM 2.5, are now a sizeable and statistically significant 0.3, a 34% from the mean

daily death count. From these results, we conclude that our findings are robust to the exclusion of the New

York City region.

Instrumental Variables vs. Ordinary Least Squares: The previous literature has identified mea-

surement error as one of the main issues when analyzing the effect of air pollution on health outcomes,

thus leading to the use of an instrumental variable approach to overcome it (Deryugina et al., 2019). This

approach can also tackle other non-random sources of variation in the pollution-health relationship, which

also limit the extent to which naive estimations via Ordinary Least Squares may lead to causal estimates.

As per standard procedure, we compare estimates obtained with the instrumental variable approach to es-

timates obtained via Ordinary Least Squares to ascertain the direction and magnitude of the bias, if any.

In Table A5, we show the reduced-form relationship between concentrations of fine particulate matter and

confirmed cases and deaths on the same day, using Ordinary Least Squares. We estimate these relationships

across the same fixed effects as before. In the first panel and first column of Table A5, we see that an

additional unit of PM 2.5 is associated with a 0.03 increase in the case rate per 100,000 population. This is

a 0.4% increase relative to the mean daily case rate in a county. Similarly, in column (4) we see that a one

unit increase in PM 2.5 is associated with 6 additional confirmed cases in a county. While these coefficients

are of the same sign as our baseline point estimates, they are less precisely estimated. In the case of case

rates, they are also much smaller in magnitude, reflecting a 0.4% change from an additional unit of PM 2.5

instead of a 2% shift. Ordinary Least Squares coefficients are essentially zero for all regressions on death

rates; for death counts, the coefficients are of the same sign as our instrumental variable point estimates but

one tenth the magnitude. The standard errors are also approximately four times as large as the coefficient.

For comparison, our instrumental variable estimates suggest an additional unit of PM 2.5 raises the daily

death count by 0.08, while the Ordinary Least Squares estimate is 0.008. Hence, our comparison of estimates

between our main specifications and Ordinary Least Squares tends to confirm the conclusion of Deryugina

et al. (2019) on the influence of measurement error in naive regressions.

Matching Weather Stations to Air Quality Monitors: We assign wind direction variables to air

quality monitors by inverse-distance weighting wind direction values of the four nearest weather stations.

21



This assignment mechanism approximates that of Deryugina et al. (2019), in which a complete national

wind direction and speed interpolation allows flexible assignment of wind variables to any given air qual-

ity monitor location.21 We also present results under two alternative assignment mechanisms. First, we

assign wind direction based on only the closest weather station.22 Next, we assign wind direction based

on inverse-distance weighting wind direction values of the twelve nearest weather stations. We present our

main empirical specifications with these alternate wind direction assignments in Table A6 and Table A7.

When assigning wind direction based on only the closest weather station, our results on cases are virtually

unchanged. However, we note slight attenuation in our point estimates on death rates as well as imprecise

estimates on death totals. Meanwhile, when assigning wind direction based on the twelve nearest weather

stations, all coefficients are very similar to our baseline estimations, with all coefficients in regressions on

death rates or counts are of larger magnitude. These results suggest that use of a single weather station to

assign wind direction may noisily capture weather patterns in the surrounding region, while our estimates

are robust to averaging wind direction over up to twelve nearest weather stations.

6 Policy Relevance

Our findings indicate that higher contemporaneous exposure to PM 2.5 leads to higher COVID-19 morbidity

and mortality. While concentrations of PM 2.5 may have decreased in some cities across the United States

in the early days of the COVID-19 outbreak (see Berman and Ebisu, 2020), we observe little change in PM

2.5 or AQI levels nationwide over the course of the pandemic. Further, Persico and Johnson (2020) report

an increase in particulate matter in counties with TRI sites since the pandemic began, suggesting that

environmental deregulation may have largely offset any decrease in air pollution driven by less motorized

traffic. Figure 6 shows a pattern consistent with these elements. Meanwhile, the overall number of COVID-

19 cases and deaths has continued to increase in the United States as well as globally. It follows from our

findings that there is a continued rationale for limiting pollution levels while reopening the economy. In

this section, we discuss several policy levers that may be used by policymakers at the federal, state, and

local level. Private companies may also contribute to keep current pollution down as part of their corporate

social responsibility strategies by letting employees telework whenever appropriate. As suggested in Persico

and Johnson (2020), hospitals may consider using air purifiers in rooms with COVID-19 patients, to limit

exposure to air pollution and prevent the need for ventilators.

At the federal level, reinstating air pollution control and reporting regulations, requirements lifted in

21Deryugina et al. (2019) use the North American Regional Reanalysis (NARR) daily reanalysis data. Since our study
uses contemporaneous wind and air quality information, NARR data is not yet readily available for our sample time period.

22If the nearest weather station is missing wind information for a given day, we assign wind variables based on the second-
closest weather station.

22



March 2020, may lower releases by large polluting sites and thereby improve COVID-19 morbidity and

mortality outcomes. Additional immediate policy levers may emerge in case of a new recovery package,

which could complement the Coronavirus Aid, Relief, and Economic Security (CARES) Act of March 27th

2020. Relief funds could, for instance, be provided to some industries conditional on pollution reductions.

Airlines are a case in point. The CARES Act required airline companies to maintain a minimum number of

flights between destinations that were served before the outbreak started. Many of those flights are likely

to be carried out at very low levels of capacity, thus generating pollution at the same time that they create

operational losses to the airlines. Renegotiating the terms of the agreement in the light of our findings may

be in the interest of both society and the airlines.

State regulations can limit the extent with which people can move for non-essential activities and encour-

age continued teleworking as much as possible, in case voluntary efforts by companies are deemed insufficient.

Local governments can also regulate traffic and pollution directly. For instance, adjusting speed limits on

highways to current traffic conditions can reduce pollution (Bel and Rosell, 2013). Temporary policies using

alternate license plates can be enforced for non-essential movements, for instance allowing individuals with

an even final digit on the license plate number to circulate only on even days of the month (Davis, 2008;

Gallego et al., 2013; Li, 2018). Retrofitted public transit vehicles can be used whenever possible (Beatty and

Shimshack, 2011; Austin et al., 2019), especially as long as the number of routes and the frequency of service

have both been adjusted downward during the outbreak. To the extent that it is feasible in the short run,

expanding current public transit infrastructure would also contribute to limit local air pollution (Lalive et al.,

2018; Li et al., 2019). Expanding subsidies for electric and hybrid vehicles as well as charging stations may

also accelerate the transition to cleaner vehicles (Beresteanu and Li, 2011; Li et al., 2017; Muehlegger and

Rapson, 2018), depending on the local context (Holland et al., 2016), the expected duration of the current

pandemic (Scudellari, 2020), as well as expectations about future ones.

Many of these policy implications apply also to other countries in the world. Further, many jurisdictions

around the world provide their citizens with air quality information (or ‘smog alerts’), which have been

shown to increase avoidance behavior (Neidell, 2009). Combining information on COVID-19 cases and

deaths with air quality information, while informing the public of the relationship between the two, could be

a potentially inexpensive approach to reduce cases and deaths. Moreover, all cities with congestion charges

already in place, such as Gothenburg, London, Milan, Singapore, or Stockholm, may consider adjusting the

price level to reflect current pollution levels and the spread of COVID-19 (Coria et al., 2015). Congestion

charges have indeed been shown to reduce overall traffic and pollution (Leape, 2006; Gibson and Carnovale,

2015). Several cities around the world also limit access to city centers or entire regions to some vehicles,

depending on vintage, fuel type, and efficiency (e.g., Barahona et al., 2019). Such regulations may also be
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adjusted during the pandemic. Over the longer run, COVID-19-related deaths could be used as an additional

impetus to internalize known externalities from local air pollution (e.g. Parry and Small, 2005; Muller and

Mendelsohn, 2009).

7 Conclusion

The novel Coronavirus has caused hundreds of thousands of deaths and severe economic damage across the

world. The common experience of many countries has shown that a trade-off exists between the speed at

which economic activity is relaunched and the risk of further cases and deaths. This trade-off is usually

described as between two important but conflicting goals: jobs and economic recovery on one side, and

limiting cases and deaths on the other. Our paper adds one dimension to this trade-off, pointing to an

untapped potential to limit severe cases and deaths while sustaining economic recovery. Our study shows

that the observed trade-off between the two aforementioned desirable goals can be relaxed by keeping current

pollution at low levels. Indeed, we find strong evidence that current air quality almost immediately affects

the severity of COVID-19 illness. According to our results, a one µg/m3 increase in PM 2.5 (about 15% of

the average concentration of PM 2.5) increases the number of severe cases by roughly 2% and deaths by 3%

from the mean daily rate in a county. Our results rely on arguably exogenous variation in wind direction

and are robust to a wide variety of specifications. Overall, our study points to a potentially important role

for policy levers aimed at lowering pollution in addressing the pandemic.
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Appendix

Table A1: Wind and Air Quality Index IV: Confirmed COVID-19 Cases and Deaths

(1) (2) (3) (4) (5) (6)
Rates Rates Rates Totals Totals Totals

Cases

Air Quality 0.0372*** 0.0350*** 0.0337*** 1.068 0.912 1.144
Index (0.0137) (0.0109) (0.0112) (1.304) (1.014) (1.088)

F Stat 17.39 17.76 17.69 17.38 17.74 17.68
Dep Var Mean 6.349 6.349 6.349 34.100 34.102 34.102
Pct Change Mean 0.586 0.551 0.531 3.131 2.674 3.356
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 107,553 107,536 107,541 107,347 107,330 107,335

Deaths

Air Quality 0.0015 0.0016 0.0014 0.0045 0.0066 0.0122
Index (0.0009) (0.0010) (0.0009) (0.0607) (0.0571) (0.0566)

F Stat 17.39 17.76 17.69 17.38 17.74 17.68
Dep Var Mean 0.181 0.181 0.181 1.139 1.139 1.139
Pct Change Mean 0.848 0.904 0.771 0.396 0.575 1.071
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 107,553 107,536 107,541 107,347 107,330 107,335

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. Controls include state-level

policy adoption, wind speed dummies, social distancing information, day-of-week dummies, and two lagged wind direction-

by-monitor cluster interactions. Regressions on counts use county population as analytic weights. Displayed output of a two

stage-least squares regression model with county and state-by-week, MSA-by-week, or CBSA-by-week fixed effects in which

wind direction and location interactions are used to predict EPA Air Quality Index in a county on a given day. Fitted AQI

levels are then used to predict county-level COVID-19 cases or deaths. F statistics computed assuming first-stage standard

errors are not serially correlated.
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Table A3: Sensitivity of the Analysis to Inclusion of Social Distancing Controls

(1) (2) (3) (4) (5) (6)
Rates Rates Rates Totals Totals Totals

Cases

PM 2.5 0.120** 0.103** 0.0958** 5.474 3.824 5.091
(0.0513) (0.0419) (0.0422) (5.510) (4.228) (4.756)

F Stat 15.04 15.43 15.25 14.97 15.35 15.18
Dep Var Mean 6.169 6.168 6.168 31.915 31.915 31.916
Pct Change Mean 1.948 1.663 1.553 17.152 11.981 15.951
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 115,309 115,292 115,298 114,650 114,633 114,639

Deaths

PM 2.5 0.00522 0.00564 0.00494 0.0864 0.0630 0.0914
(0.00349) (0.00349) (0.00347) (0.216) (0.188) (0.191)

F Stat 15.04 15.43 15.25 14.97 15.35 15.18
Dep Var Mean 0.173 0.173 0.173 1.065 1.065 1.065
Pct Change Mean 3.025 3.264 2.859 8.107 5.913 8.576
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 115,309 115,292 115,298 114,650 114,633 114,639

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. Controls include state-level

policy adoption, wind speed dummies, day-of-week dummies, and two lagged wind direction-by-monitor cluster interactions.

Regressions on counts use county population as analytic weights. Displayed output of a two stage-least squares regression

model with county and state-by-week, MSA-by-week, or CBSA-by-week fixed effects in which wind direction and location

interactions are used to predict PM 2.5 levels in a county on a given day. Fitted pollution values are then used to predict

county-level COVID-19 cases and deaths. F statistics computed assuming first-stage standard errors are not serially corre-

lated.
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Table A4: Sensitivity of the Analysis to Dropping New York City Region

(1) (2) (3) (4) (5) (6)
Rates Rates Rates Totals Totals Totals

Cases

PM 2.5 0.152*** 0.124*** 0.120*** 6.898 5.511 6.226
(0.0501) (0.0415) (0.0423) (5.199) (4.091) (4.457)

F Stat 14.66 14.85 14.78 14.65 14.84 14.76
Dep Var Mean 6.266 6.265 6.266 31.931 31.931 31.932
Pct Change Mean 2.419 1.979 1.911 21.602 17.259 19.498
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 106,086 106,068 106,074 105,883 105,865 105,871

Deaths

PM 2.5 0.0090*** 0.0089*** 0.0079** 0.308** 0.310*** 0.314***
(0.0032) (0.0032) (0.0031) (0.151) (0.108) (0.106)

F Stat 14.66 14.85 14.78 14.65 14.84 14.76
Dep Var Mean 0.170 0.170 0.170 0.918 0.918 0.918
Pct Change Mean 5.275 5.199 4.648 33.504 33.706 34.201
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 106,086 106,068 106,074 105,883 105,865 105,871

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. Controls include state-level

policy adoption, wind speed dummies, day-of-week dummies, social distancing information, and two lagged wind direction-

by-monitor cluster interactions. Regressions on counts use county population as analytic weights. Displayed output of a two

stage-least squares regression model with county and state-by-week, MSA-by-week, or CBSA-by-week fixed effects in which

wind direction and location interactions are used to predict PM 2.5 levels in a county on a given day. Fitted pollution values

are then used to predict county-level COVID-19 cases and deaths. F statistics computed assuming first-stage standard errors

are not serially correlated.
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Table A5: Ordinary Least Squares: PM 2.5 and Cases and Deaths

(1) (2) (3) (4) (5) (6)
Rates Rates Rates Totals Totals Totals

Cases

PM 2.5 0.0296 0.0166 0.0180 5.914 5.859 5.917
(0.0197) (0.0149) (0.0153) (4.567) (4.679) (4.675)

Dep Var Mean 6.700 6.697 6.698 34.458 34.453 34.457
Pct Change Mean 0.442 0.248 0.268 17.164 17.006 17.174
Controls
County & State-by-Week FEs
County & MSA-by-Week FEs
County & CBSA-by-Week FEs
Observations 112,957 112,944 112,939 112,551 112,539 112,534

Deaths

PM 2.5 -0.00037 -0.00050 -0.00074 0.00787 0.00824 0.00304
(0.00061) (0.00054) (0.0006) (0.0256) (0.0227) (0.0222)

Dep Var Mean 0.195 0.194 0.195 1.168 1.168 1.168
Pct Change Mean -0.192 -0.259 -0.378 0.674 0.706 0.260
Controls
County & State-by-Week FEs
County & MSA-by-Week FEs
County & CBSA-by-Week FEs
Observations 112,957 112,944 112,939 112,551 112,539 112,534

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. Controls include state-level

policy adoption, wind speed dummies, day-of-week dummies, and social distancing information. Regressions on counts use

county population as analytic weights. Displayed output of a reduced form ordinary least squares estimation of population-

weighted county-level PM 2.5 on confirmed COVID-19 cases or deaths.

32



Table A6: Sensitivity of the Analysis to Assigning Wind Direction Based on Nearest Weather Station

(1) (2) (3) (4) (5) (6)
Rates Rates Rates Totals Totals Totals

Cases

PM 2.5 0.147*** 0.121*** 0.113** 4.201 3.404 4.151
(0.0529) (0.0428) (0.0440) (5.950) (4.146) (4.403)

F Stat 14.28 14.49 14.60 14.27 14.48 14.58
Dep Var Mean 6.356 6.356 6.356 34.170 34.170 34.171
Pct Change Mean 2.306 1.911 1.776 12.293 9.961 12.149
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 107,171 107,154 107,160 106,968 106,951 106,957

Deaths

PM 2.5 0.00465 0.00465 0.00402 0.00257 -0.0129 0.00918
(0.00360) (0.00348) (0.00346) (0.263) (0.267) (0.264)

F Stat 14.28 14.49 14.60 14.27 14.48 14.58
Dep Var Mean 0.181 0.181 0.181 1.141 1.141 1.141
Pct Change Mean 2.565 2.564 2.218 0.226 -1.131 0.804
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 107,171 107,154 107,160 106,968 106,951 106,957

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. Controls include state-level

policy adoption, wind speed dummies, day-of-week dummies, social distancing information, and two lagged wind direction-

by-monitor cluster interactions. Regressions on counts use county population as analytic weights. Displayed output of a two

stage-least squares regression model with county and state-by-week, MSA-by-week, or CBSA-by-week fixed effects in which

wind direction and location interactions are used to predict PM 2.5 levels in a county on a given day. Fitted pollution values

are then used to predict county-level COVID-19 cases and deaths. F statistics computed assuming first-stage standard errors

are not serially correlated.
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Table A7: Sensitivity of the Analysis to Assigning Wind Direction Based on Twelve Nearest Weather
Stations

(1) (2) (3) (4) (5) (6)
Rates Rates Rates Totals Totals Totals

Cases

PM 2.5 0.116** 0.102** 0.0891** 4.001 2.665 3.314
(0.0509) (0.0418) (0.0429) (4.963) (3.626) (3.866)

F Stat 15.97 16.06 16.08 15.95 16.04 16.10
Dep Var Mean 6.356 6.356 6.356 34.170 34.170 34.171
Pct Change Mean 1.820 1.607 1.403 11.710 7.800 9.697
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 107,171 107,154 107,160 106,968 106,951 106,957

Deaths

PM 2.5 0.00513 0.00610* 0.00537 0.134 0.137 0.145
(0.00332) (0.00347) (0.00340) (0.192) (0.167) (0.166)

F Stat 15.97 16.06 16.08 15.95 16.04 16.10
Dep Var Mean 0.181 0.181 0.181 1.141 1.141 1.141
Pct Change Mean 2.831 3.365 2.960 11.760 12.007 12.691
Controls
County & State-by-Week FEs
County and MSA-by-Week FEs
County and CBSA-by-Week FEs
Observations 107,171 107,154 107,160 106,968 106,951 106,957

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the county in parentheses. Controls include state-level

policy adoption, wind speed dummies, day-of-week dummies, social distancing information, and two lagged wind direction-

by-monitor cluster interactions. Regressions on counts use county population as analytic weights. Displayed output of a two

stage-least squares regression model with county and state-by-week, MSA-by-week, or CBSA-by-week fixed effects in which

wind direction and location interactions are used to predict PM 2.5 levels in a county on a given day. Fitted pollution values

are then used to predict county-level COVID-19 cases and deaths. F statistics computed assuming first-stage standard errors

are not serially correlated.
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